
Noname manuscript No.
(will be inserted by the editor)

Efficiently Computing Alternative Paths in Game
Maps

Lingxiao Li · Muhammad Aamir
Cheema · Mohammed Eunus Ali · Hua
Lu · Huan Li ·

Received: date / Accepted: date

Abstract Alternative pathfinding requires finding a set of k alternative paths
(including the shortest path) between a given source s and a target t. Intu-
itively, these paths should be significantly different from each other and mean-
ingful/natural (e.g., must not contain loops or unnecessary detours). While
finding alternative paths in road networks has been extensively studied, to the
best of our knowledge, we are the first to formally study alternative pathfind-
ing in game maps which are typically represented as Euclidean planes con-
taining polygonal obstacles. First, we adapt the existing techniques designed
for road networks to find alternative paths in the game maps. Then, based on
our web-based system that visualises alternative paths generated by different
approaches, we conduct a user study that shows that the existing road net-
work approaches generate high-quality alternative paths when adapted for the
game maps. However, these existing approaches are computationally inefficient
especially when compared to the state-of-the-art shortest path algorithms. Mo-
tivated by this, we propose novel data structures and exploit these to develop
an efficient algorithm to compute high-quality alternative paths. Our extensive

L. Li
Faculty of Information Technology, Monash University, Australia
E-mail: lingxiao.li@monash.edu

M. Aamir Cheema
Faculty of Information Technology, Monash University, Australia
E-mail: aamir.cheema@monash.edu

M. Eunus Ali
Bangladesh University of Engineering and Technology, Bangladesh
E-mail: eunus@cse.buet.ac.bd

H. Lu
Department of People and Technology, Roskilde University, Denmark
E-mail: luhua@ruc.dk

H. Li
Department of Computer Science, Aalborg University, Denmark
E-mail: lihuan@cs.aau.dk

2 Lingxiao Li et al.

experimental study demonstrates that our proposed algorithm is more than an
order of magnitude faster than the existing approaches and returns alternative
paths of comparable quality. Furthermore, our algorithm is comparable to a
state-of-the-art shortest path algorithm in terms of running time.

Keywords Diverse shortest paths · Alternative pathfinding · Game maps

1 Introduction

A shortest path query is one of the fundamental problems with a wide variety
of applications in many domains. It requires finding the minimal cost path
between two given points, a source s and a target t. This type of problem is
commonly encountered in various contexts, including but not limited to road
networks [2], social networks [39], geographical systems [62], indoor spaces [9],
and game maps [15], to name a few. In many cases, it is helpful to provide
several alternative paths to the users, in addition to the shortest one, as this
allows them to select the route that best suits their needs or preferences. For
example, popular navigation systems like Google Maps offer several options
for traveling from the source to the target, allowing the users to choose the
path that they prefer. To be useful for the end users, these alternative paths
should be reasonably short and distinct from one another to provide meaning-
ful choices to the user.

(a) Warcraft III (b) Baldurs Gate II

Fig. 1 Four alternative paths on two different game maps.

There has been a large body of work on finding alternative paths in road
networks (e.g., see [37,26,44]). Finding alternative paths in game maps has
many useful applications but has not been studied in this context. In real-
time strategy (RTS) games, characters typically take the shortest path to

Efficiently Computing Alternative Paths in Game Maps 3

reach their destination, but this can make their movements predictable to
opponents. To avoid this, it may be beneficial to compute alternative paths and
randomly assign one of them to the character. Many RTS games allow players
to choose their own waypoints, which they can use to make their characters
follow a path different from the shortest path. In such games, a player may
be shown several alternative paths so that they can choose a path for their
character to take. Figure 1 illustrates two examples where four alternative
paths are provided on two different game maps. Alternative paths can also be
useful in indoor venues, which are often represented as a Euclidean plane with
obstacles. Indoor navigation systems may provide multiple path options for
users to choose from.

Some open-source game development projects1 have attempted to include
support for alternative paths in game maps. Existing techniques designed for
road networks can also be adapted for the game maps. However, it is not
clear how efficient or effective these algorithms are when applied on game
maps. In this paper, we aim to fill this gap by formally studying the prob-
lem of finding alternative paths in game maps. We adapt the existing road
network algorithms for game maps and our experimental study demonstrates
that these algorithms are not efficient when applied on game maps. This is
mainly because they fail to exploit the properties unique to game maps such
as polygonal obstacles and that the source and target can be anywhere in the
non-obstacle area in contrast to the road networks where these must be on the
road edges/nodes.

Intuitively, the alternative paths must be sufficiently dissimilar to each
other and must be meaningful/natural, e.g., should not be non-taut or con-
tain un-necessarily long/short detours etc. Note that computing k shortest
paths is not a good solution for alternative pathfinding as these paths are ex-
pected to be very similar to each other. In this paper, we make the following
contributions.

– To the best of our knowledge, we are the first to study the problem of
finding alternative paths in game maps. We adapted three techniques that
are commonly used for finding alternative paths in road networks, called
Penalty [4,11,32], Plateaus [29] and Dissimilarity [14,40], for use in game
maps. However, it was unclear if these techniques would be able to generate
high-quality alternative paths in game maps. Therefore, we created a web-
based demonstration system and conducted a user study on nine diverse
game maps selected from a widely used benchmark. We received a total
of 472 responses and found that the adapted techniques generated high-
quality alternative paths according to the users. We have made the source
code2 for the web-based demonstration system publicly available for reuse
or further development.

1 For example, see a game development project with Unity3D at https://arongranberg.
com/astar/docs/alternativepath.html

2 https://bitbucket.org/lingxiao29/customized/src/master/

https://arongranberg.com/astar/docs/alternativepath.html
https://arongranberg.com/astar/docs/alternativepath.html
https://bitbucket.org/lingxiao29/customized/src/master/

4 Lingxiao Li et al.

– We observe that the existing approaches when extended for game maps
are computationally expensive especially when compared with the recent
shortest pathfinding algorithms for game maps. To address this, we pro-
pose an efficient algorithm to compute alternative paths in game maps
exploiting a novel compressed via-path database (CVPD) which has cer-
tain advantages compared to the traditional compressed path databases
(CPDs) [56].

– We conduct an extensive experimental study on a widely used game maps
benchmark which shows that our proposed algorithm computes the al-
ternative paths in a time comparable to a state-of-the-art shortest path
algorithm, Polyanya [15], (slower for shorter paths but faster for longer
paths) and outperforms the existing alternative path approaches by more
than an order of magnitude. We also evaluate the quality of alternative
paths returned by our algorithm using some well-known quantitative mea-
sures such as path similarity, bounded stretch and local optimality [31] .
The results show that the paths returned by our algorithm are comparable
to those returned by the existing approaches in terms of quality.

This paper is an extended version of our previous work [35]. The main
contribution of our previous work was the user study and experiments to eval-
uate the existing alternative pathfinding approaches. In this extended version,
our key contribution is a novel data structured (CVPD) and a new algorithm
which computes the alternative paths much more efficiently.

The rest of the paper is organised as follows. In Section 2, we present
problem definition, evaluation measures, and related work. In Section 3, we
first discuss how existing algorithms for road networks can be extended for
alternative pathfinding in game maps and then we present the details of our
user study and results. Section 4 presents the details of our efficient algorithm
for computing alternative paths. Experimental study is provided in Section 5
followed by conclusions in Section 6.

2 Preliminaries

2.1 Problem Formulation

In this paper, we assume that the input map is a 2D Euclidean plane which
contains a set of obstacles. Each obstacle is a polygon and its convex corners
are called convex vertices. The set of all convex vertices in the map is denoted
as V . We say that two points are co-visible (or are visible to each other) if a
straight line connecting them does not pass through any obstacle in the map.
A path P between a source s and a target t is an ordered set of points ⟨p1,p2,
· · · , pn⟩ such that, for each pi (i < n), pi and pi+1 are co-visible where p1 = s
and pn = t. Length of a path P is the cumulative Euclidean distance between
every successive pair of points, denoted as |P |, i.e., |P | =

∑k−1
i=1 EDist(pi, pi+1)

where EDist(x, y) is the Euclidean distance between x and y. The shortest

Efficiently Computing Alternative Paths in Game Maps 5

path sp(s, t) is a path between s and t with the minimum length. The shortest
distance between s and t is denoted as d(s, t), i.e., d(s, t) = |sp(s, t)|.
Problem Definition. Given a source s, a target t, and a positive integer k,
we aim at finding k alternative paths (including the shortest path sp(s, t))
between s and t such that each alternative path is no longer than d(s, t) × ϵ
where ϵ ≥ 1 is a user-defined parameter.

Intuitively, the k alternative paths must be “significantly different” from
each other (e.g., should have small overlap with each other) and each path
must be a “reasonable” path, e.g., should not contain unnecessary detours
and loops etc. The existing works on finding alternative paths in road net-
works (e.g., see [31]) have defined several measures to quantify whether a set
of alternative paths is “reasonable” or not. “Significantly different” can be
quantified by defining a dissimilarity function based on the overlap between
paths. We formally define these measures in Section 2.2 which are also used in
the experimental study. Like most existing works on alternative paths in road
networks, we focus on retrieving k alternative paths with the smallest lengths
while guaranteeing that the intra-path dissimilarity between these paths is
no less than a user-defined threshold θ. Nevertheless, we remark that our
algorithm can be easily generalised to handle other objective functions (e.g.,
retrieve k paths that minimise a weighted sum defined over several quantiative
measures). Please see details in Section 4.2.2.

2.2 Evaluation Measures

Let P = ⟨p1, p2, · · · , pn⟩ be an alternative path between s and t such that
p1 = s, pn = t, each pi (1 < i < n) is a vertex of an obstacle and for each
pi (i < n), pi and pi+1 are visible from each other. We use Px,y where x < y
to denote the subpath ⟨px, · · · , py⟩ of P and denote its length as dP (px, py),

i.e., dP (px, py) =
∑y−1

i=x EDist(pi, pi+1). Hereafter, whenever we use x and y,
assume x < y.
Bounded Stretch [31]. Stretch of a path defines how long is the path com-
pared to the shortest path. Formally, stretch of a subpath Px,y is defined as
S(Px,y) = dP (px, py)/d(px, py). For an alternative path P , its bounded stretch
is the maximum stretch of any of its subpaths.

BS(P) = max
∀(x,y)

dP (px, py)

d(px, py)
(1)

For example, assume a path P which has a bounded stretch 1.20, i.e.,
the maximum stretch of any of its subpath is 1.20. This implies that there is
no subpath of P which is more than 20% longer than the shortest distance
between its end points.

Note that an alternative path P with smaller bounded stretch is better.
Also, if P is a shortest path, its bounded stretch is 1. Let P be a set of alterna-
tive paths returned by an algorithm. The bounded stretch of P is the maximum
bounded stretch of any of the paths in P, i.e., BS(P) = max∀P∈PBS(P).

6 Lingxiao Li et al.

Local Optimality [31]. We say that a subpath Px,y is suboptimal if it
is longer than the shortest distance between px and py, i.e., dP (px, py) >
d(px, py). Given an alternative path P between s and t, we use minL(P) to
denote the length of the shortest suboptimal subpath of P (if all subpaths
are optimal, minL(P) is assumed to be infinity). Note that any subpath of P
which is shorter than minL(P) must be optimal. Thus, minL(P) is a measure
of optimality. The local optimality LO(P) normalises this measure w.r.t. the
shortest distance d(s, t) between s and t.

LO(P) =
minL(P)

d(s, t)
= min

∀(x,y):dP (px,py)>d(px,py)

dP (px, py)

d(s, t)
(2)

Consider an alternative path P between s and t and assume that its shortest
suboptimal path has length 20 and d(s, t) = 100. Its local suboptimality is
20/100 = 0.2. This implies that every subpath of P which is shorter than 20%
of the shortest path between s and t is guaranteed to be an optimal path. A
path P with higher local optimality is better. Also, if P is a shortest path,
its local optimality is 1. Let P be a set of alternative paths returned by an
algorithm. The local optimality of P is LO(P) = min∀P∈PLO(P).
Similarity [37]. Similarity Sim(P) of a set of paths P is

Sim(P) = max
∀(Pi,Pj)∈P×P:i ̸=j

|Pi ∩ Pj |
|Pi ∪ Pj |

(3)

where |Pi ∩ Pj | (resp. |Pi ∪ Pj |) denotes the total length of the overlap (resp.
union) of two paths Pi and Pj . Dissimilarity is 1− Sim(P).

2.3 Related Work

Graphs are commonly used to model many real-world problems in a wide
variety of application domains such as social networks [28,45], recommenda-
tion systems [52,49], health informatics [19,22], transportation networks [59,
6], the Internet of Things [27,38], and information security [25,61]. Shortest
path queries [17,47,2] are one of the most fundamental and frequently used
operations conducted on graphs. In this work, our focus is on path queries on
graphs representing physical spaces such as game maps or road networks. In
Section 2.3.1, we present existing work related to computing shortest paths
in such graphs whereas Section 2.3.2 covers the related works on computing
alternative paths in such graphs.

2.3.1 Computing Shortest Paths

Shortest path queries [17,47,2,24,5] and related queries [58,23,10,33,1] have
been very well-studied in road networks. Below, we discuss two of the most
popular shortest path algorithms for road networks namely contraction hier-
archies and hub labeling.

Efficiently Computing Alternative Paths in Game Maps 7

Contraction Hierarchies (CH) [24] is a graph indexing technique that can
answer shortest path query orders of magnitude faster than Dijkstra’s algo-
rithm. As a successor of Highway Hierarchies [50] and Highway Node Rout-
ing [51], CH implements the idea of shortcuts to exploit the road network
hierarchy. These shortcuts allow efficient shortest path retrieval during the
search process which employs a bidirectional search from source and target
on the constructed hierarchy. Hub labeling [2] is another indexing technique
which assigns, during preprocessing phase, labels to each node in the graph
a set of labels. These labels are assigned such that for any source s and t,
the labels of s and t are guaranteed to contain a hub node on the shortest
path between s and t. During the query processing, the labels of s and t are
joined to find the common hub nodes and the hub node that gives the smallest
distance from s to the hub node and to t is used to recover the shortest path.

In game maps, shortest pathfinding has also been extensively studied [54,
15,20]. Typically, these approaches construct a visibility graph by connecting
the obstacle vertices that are co-visible. At query time, source s and target
t are connected to the visibility graph and it can be guaranteed that the
shortest path in this graph is the shortest path between the source and target.
Polyanya [15] is the state-of-the-art online shortest path algorithm. It employs
a navigation mesh [30] which divides the traversable space into a disjoint
set of convex polygons and uses an algorithm similar to A* algorithm with
subtle differences (see details in [15]). End Point Search [53] (EPS) employs
a Compressed Path Database (CPD) [7] and Polyanya. Specifically, given a
V × V table where each row R(u) of a convex vertex u ∈ V stores, for every
v ∈ V , the first vertex f on the shortest path from u to v. Each row R(u) is
then compressed using the run-length encoding (RLE) [55]. Given this CPD,
for any pair of vertices u and v, the first move (i.e., the first vertex) on the
shortest path from u to v can be accessed from the CPD using a binary search
on the compressed row R(u). The shortest path from u to v can be obtained by
recursively extracting the first moves towards v until v is reached. Regarding
EPS, which employs Polyanya to incrementally find vertices visible from s and
t, respectively. Then, the CPD is used to obtain the pair-wise paths between
these visible vertices efficiently. Several pruning techniques and optimisations
are proposed to speed up the computation.

2.3.2 Computing Alternative Paths

Existing studies have proposed a variety of approaches to answer alternative
pathfinding queries in road networks [36,37,26,44,42]. Some existing works
focus on finding k-shortest paths [60,21]. However, these do not reflect good
alternative paths as most of the k shortest paths have a very high level of over-
lap with each other. To address this, several existing works use user-defined
parameters to obtain k paths that are significantly different from each other
and are not too long compared to the shortest path [40,12,13]. These do not
guarantee the quality of alternative paths (e.g., paths may have local detours
etc.), Furthermore, the problem as defined in these papers is NP-Hard making

8 Lingxiao Li et al.

them computationally challenging without providing any path quality guar-
antee. The penalty based approaches [11,4] compute the alternative paths by
increasing the edge weights on the paths already found (to avoid selecting the
edges while finding additional paths). Plateau-based approach [41,3,43,18,48,
16] is arguably the most popular approach to return the promising alternative
paths as it naturally provides several guarantees such as local optimality and
smaller overlaps with the other paths, etc. In some works (e.g.,[3]), the author
proposed several constraints to formally define the alternative paths, which
should be locally optimal, limited sharing, and uniformly bounded stretch.

Indeed, the shortest pathfinding in game maps has been well understood in
existing studies, e.g., see [15,53] and references therein. However, alternative
pathfinding queries have only been solved in road networks. Next, we briefly
explain the alternative pathfinding approaches in road networks, as in [37].
The majority of alternative pathfinding algorithms fall into three broad cate-
gories, which are Penalty [4], Plateaus [29], and Dissimilarity [13]. For ease of
presentation, we assume that road networks are undirected graphs.

Penalty: Algorithms [4,11,32] in this category iteratively calculate the
shortest paths between source and target. Specifically, once the current it-
eration is finished and the shortest path P = ⟨p1,p2, · · · , pn⟩ is found, the
algorithm increases the weight of each edge on the current path P by a certain
penalty factor (e.g., multiplying the edge weight by 1.5). Since the edge weights
on the shortest path have been increased, in the next iteration, the algorithm
is likely to find a different shortest path [37]. The algorithm terminates once
k different paths are returned or when the length of the path found in the
current iteration is longer than d(s, t)× ϵ. One major issue with this approach
is its slow query processing time because it needs multiple traversals over the
graph to find the k alternative paths. Furthermore, there is no guarantee that
the k alternative paths are significantly different because despite the increase
in edge weights, the paths may still have significant overlap with each other.

Plateaus: Cotares Limited designed this algorithm [29] for their rout-
ing engine called Choice Routing. First, it creates a shortest path tree Ts

rooted at the source s and another shortest path tree Tt rooted at the tar-
get t. Next, Ts and Tt are joined and common branches in both trees are
found. Each of the common branches is called a plateau. Consider one branch
⟨s, · · · , u1, u2, · · · , un, · · · , y⟩ in Ts and another branch ⟨t, · · ·un, un−1, · · · , u1,
· · · , x⟩ in Tt. When these branches are joined, the common part ⟨u1, · · · , un⟩
is found, i.e., ⟨u1, · · · , un⟩ is a plateau, which we denote as pl(u1, un) using
the end points of the branch. We remark that the shortest path between s
and t is always a plateau and its length is d(s, t). Let pl(u, v) be a plateau
such that u is the end closer to s and v is the end closer to t. This plateau
can be used to retrieve an alternative path sp(s, u)⊕ pl(u, v)⊕ sp(v, t) where
⊕ is the concatenation operation. It was observed in [29] that longer plateaus
typically generate better alternative paths. Therefore, the algorithm picks k
longest plateaus and generates alternative paths based on each of the plateaus.
We give a detailed example of how Plateaus works in Section 3.

Efficiently Computing Alternative Paths in Game Maps 9

The alternative paths generated using plateaus have some natural/useful
characteristics which make them attractive for both research and commercial
solutions. Firstly, an alternative path generated using a longer plateau avoids
unnecessary/unnatural detours (e.g., leaving a motorway and entering it again
shortly afterward without reducing the traveling cost). This is due to local
optimality provided by plateaus. Specifically, as noted in [3], a path that is
local optimality does not have undesirable local detours. Secondly, plateaus
do not overlap with each other, therefore, the alternative paths generated
using longer plateaus tend to have smaller overlaps with each other. Thirdly,
plateaus are generated using the shortest path trees and seamlessly capture
the intrinsic properties of the underlying road networks.
Dissimilarity: This group of techniques follows a function to compute dis-
similarity between two paths. Specifically, Given a list of the shortest paths,
this function returns the shortest alternative paths with a dissimilarity value
between any two paths that are less than or equal to the given threshold θ.
This problem is NP-hard [14], to which several approximate algorithms [14,
40] have been proposed. Now, we explain an approach [13] shown in [37] to
generate high-quality alternative paths in road networks.

Given a vertex v in the road network, a via-path sp(s, v, t) is the concate-
nation of path sp(s, v) and sp(v, t). Namely, sp(s, v, t) = sp(s, v)⊕ sp(v, t). To
efficiently retrieve the paths from any vertex v to either source s or target t,
two shortest path trees Ts and Tt are computed and stored. With these short-
est path trees, the algorithm iteratively evaluates vertices in the road networks
in ascending order of their via-path lengths. If the dissimilarity value between
the current via-path and any added alternative path is at least θ, then add
this via-path to the result set. Once the result set has k alternative paths or
the current via-path is longer than d(s, t)× ϵ, the algorithm stops.

3 User Study

A recent research study [37] was conducted on road networks in three different
cities, Melbourne, Dhaka, and Copenhagen. The study found that using certain
techniques, called Penalty, Dissimilarity, and Plateaus, can create alternative
routes that are of similar quality to those generated by Google Maps. In this
work, we adapt these techniques for generating alternative paths in video game
maps (Section 3.1). However, first, we want to determine if these techniques
would be effective in generating high-quality alternative paths in game maps.
To answer this question, we conducted a user study and present the results
later in Section 3.2.

3.1 Adapting Existing Techniques for Game Maps

In this section, we describe our adaptation of the existing techniques, Penalty,
Dissimilarity and Plateaus, for the game maps. First, a visibility graph G =

10 Lingxiao Li et al.

Fig. 2 Three alternative paths generated by Plateaus are ⟨s, I,G,H, t⟩, ⟨s,K,C,B,E,H, t⟩
and ⟨s,K,C,A, D, J, t⟩ with lengths 88, 92 and 100, respectively.

{V,E} is created where V is the set containing convex corners/vertices in the
game map and E is the set of edges connecting every pair of vertices (u, v)
that are visible to each other. The weight of each edge corresponds to the
Euclidean distance EDist(u, v) between the pair of vertices. To compute the
shortest path between a source s and a target t, the source and target are
added to the graph G by inserting some new edges between s (resp. t) and the
vertices which are visible from s (resp. t). Figure 2 provides an example. There
are three obstacles (grey polygons). The edges shown in the figure correspond
to the visibility graph G. Note that s and t have been added to G by connecting
them to the vertices visible from them, respectively. After the visibility graph
is constructed, the existing approaches can be directly applied on this graph.
The paths that are non-taut are filtered. A taut path is a path which, when
treated as a string, cannot be made “tighter” by pulling on its ends [46]. For
example, the path ⟨s, I, F,G⟩ is non-taut because string-pulling results in a
shorter path ⟨s, I,G⟩.

Example 1 Consider the example in Figure 2. We briefly describe how Plateaus
generates three alternative paths. In this example, A to K are the convex
vertices. Visibility graph includes the edges that connect source and target to
their respective visible convex vertices (I and K for s and H and J for t).
Then, Plateaus computes the forward shortest path tree Ts rooted at s (see
the tree shown in blue edges) and the backward shortest path tree Tt rooted at
t (see the pink edges shown in broken lines). These two trees are joined and the
branches which are common in the two trees are the plateaus. The algorithm
then chooses three longest plateaus: ⟨s, I,G,H, t⟩, ⟨K,C,B,E⟩ and ⟨D,J⟩ with
lengths 88, 47 and 16, respectively. Using these three plateaus, three alternative
paths are generated connecting s and t to the end of each plateau closer to
them. The three alternative paths are ⟨s, I,G,H, t⟩, ⟨s,K,C,B,E,H, t⟩ and
⟨s,K,C,A,D, J, t⟩ with lengths 88, 92 and 100, respectively.

Efficiently Computing Alternative Paths in Game Maps 11

3.2 User Study and Results

Fig. 3 The web-based system for the user study: Pre-defined Queries.

To conduct the user study, we extend our previous work [34] to develop
a web-based system which helps visualising the alternative paths generated
by different approaches. We select 9 diverse maps from a well-known game
maps benchmark3. Participants in the user study are sent a webpage4 which

3 https://movingai.com/benchmarks/grids.html
4 http://aamircheema.com/paths_games/

https://movingai.com/benchmarks/grids.html
http://aamircheema.com/paths_games/

12 Lingxiao Li et al.

contains the instructions as well as links to the web-based system. We sent
two different types of surveys to the participants:

– Pre-defined: In this type of survey, for each of the nine game maps, the
participant were shown three queries (source-target pairs) which were pre-
selected by us. This was to ensure that different participants provide rating
for the same set of queries.

– User-selected: In this type of survey, the participants were given the
freedom to choose any source-target pair by clicking on the map. The
participants were required to choose at least one source-target pair for
each of the nine maps. This was to ensure that we get user-selected queries
from different participants for each of the maps.

Based on the source and target of each query, our web-based system pro-
duces up to 4 alternative paths for each approach. We anonymise these ap-
proaches and display Plateaus, Dissmilarity and Penalty as A, B and C, respec-
tively. This is to cater for any potential preconceived biases. The participants
can view the paths generated by these approaches by clicking on the radio but-
tons (see Fig. 3). For each of the approaches, the system asks the participants
to give a rating at a scale of 1 to 5 where higher is better. All the partici-
pants were given a quick overview of the alternative paths in road networks
and game maps. We asked them to rate these paths based on their impression
of how good the paths generated by these approaches were especially taking
into account that the paths should be substantially different from each other
but meaningful at the same time (e.g., should not have strange detours or
loops). We remark that, due to the popularity of navigation services, most of
the people have experience with alternative paths in road networks, however,
most people have not necessarily seen alternative paths in video games. Hence,
we carefully chose the participants who had background either in game maps
pathfinding or alternative path computation in road networks.

The results of the user study are shown in Table 1. In total, we got 472
responses from 9 different participants. As it can be seen, the ratings given
by the participants to different approaches are quite similar on average. Also,
the ratings are usually typically high (e.g., around 4 on a scale of 1 to 5
where higher is better). To test the statistical significance of the results, we
conducted one-way repeated measures ANOVA test. Given a null hypothesis of
no statistically significant difference in mean ratings of the three approaches,
the results suggest that, at p < 0.05 level, there is no evidence that the null
hypothesis is false, i.e., there is no credible evidence that the three approaches
received different ratings on average.

Later, in the experiments section, we also consider the measures discussed
in Section 2.2 and compare these approaches against those measures. Our
user study and the experimental study demonstrate that these approaches are
able to generate good-quality alternative paths. However, one major limitation
of these techniques (as shown later in the experimental study) is that their
computation time is quite high especially when compared to the shortest path

Efficiently Computing Alternative Paths in Game Maps 13

#Responses
Average Rating

Plateaus Dissimilarity Penalty

All 472 4.028 3.998 3.852
Pre-defined 243 4.016 4.025 3.938
User-selected 229 4.039 3.969 3.760

Table 1 Average user rating for Plateaus, Dissimilarity (shown as Dissim.) and Penalty.
Best values for each category are shown in bold.

algorithms in game maps. To fill this gap, in the next section, we present an
efficient algorithm to compute alternative paths in game maps.

4 Efficient Alternative Pathfinding Algorithm

4.1 Offline Preprocessing

Before we present our offline preprocessing, we first describe Compressed Path
Database (CPD) [7]. Given a V × V table where each row R(u) of a convex
vertex u ∈ V stores, for every v ∈ V , the first vertex f on the shortest path
from u to v. Each row R(u) is then compressed using run-length encoding
(RLE) [55]. Given this CPD, for any pair of vertices u and v, the first move
(i.e., the first vertex) on the shortest path from u to v can be accessed from
the CPD using a binary search on the compressed row R(u). The shortest path
from u to v can be obtained by recursively extracting first moves towards v
until v is reached.

Example 2 For our running example in Figure 4, Table 2 shows two uncom-
pressed rows of the CPD containing first moves from I and K, respectively,
to the other vertices. Consider the row of K. The first move from K to each
of A, B, C, D, E, H and J is C. Therefore, the corresponding cells contain
C. A wildcard symbol “*” is stored for the cell K because the path from K
to K is not needed. The wildcard symbol can be compressed with any other
symbol. Run-length encoding (RLE) is used to compress the row of K as
[1C:6I:8C:9I:10C] (the compressed row indicates that the value in this row
for indices [1, 6) is C, the value is I for indices [6, 8) and so on). To recover the
shortest path from K to G, a binary search is conducted on the RLE string
of K to extract the first move I on the shortest path from K to G. Next, the
algorithm conducts a binary search on the RLE string of I to extract the first
move G from I to G. The algorithm stops since G is reached.

Using the CPD, the shortest path can be obtained in O(e) first move
extractions where e is the number of edges on the shortest path. Each first
move extraction takes O(log r) where r is the size of the compressed row. Thus,
the total cost to obtain the shortest path/distance using a CPD is O(e log r).
Next, we present the details of our proposed data structure called CVPD+DL
which allows computing distance between any two vertices u ∈ V and v ∈ V

14 Lingxiao Li et al.

Fig. 4 An example showing three polygonal obstacles

A B C D E F G H I J K

I F F K F F F G G * F K
K C C C C C I I C I C *

Table 2 Rows I and K of a Compressed Path Database (CPD)

in logarithmic time. Once the distance d(u, v) is computed, the shortest path
between u and v can be computed in time linear to the number of edges on
the shortest path, i.e., O(e).

4.1.1 CVPD+DL:

The proposed index, CVPD+DL, consists of two new indexes namely Com-
pressed Via-Path Database (CVPD) and Distance Labels (DL).
Compressed Via-Path Database (CVPD): We impose a strict total order on
all vertices in V . Although any ordering can be used, in this paper, we use
betweenness centrality score [8] to order the nodes where the betweenness
score of a vertex v is the number of shortest paths passing through v. The
betweenness scores of vertices are computed by constructing all shortest path
trees. We break the ties arbitrarily but consistently, e.g., using node IDs. Ranks
of nodes are their positions in this order, e.g, the highest ranked node is the
node with the highest betweenness score. We use u <B v to denote that u
ranks higher than v.

While a traditional CPD stores the first move f on the shortest path from
u ∈ V to v ∈ V , a CVPD stores the highest ranked vertex h on the shortest
path between u and v. This vertex is called the highest via node on the shortest
path and is denoted as via(u, v). Since sp(u, v) = sp(v, u), we have via(u, v) =
via(v, u). Therefore, we only need to store the highest via node via(u, v) only
once in the CVPD. Specifically, we store via(u, v) in the row of a vertex u
only if u <B v. Otherwise, we store a wildcard symbol “*” to achieve better

Efficiently Computing Alternative Paths in Game Maps 15

compression. Note that, unlike CVPD, the traditional CPDs are not symmetric
and need to store first move from u to v as well as the first move from v to u.

Example 3 Table 3 shows CVPD for the example shown in Figure 4. The
alphabetical order of vertices in Figure 4 represents the betweenness ranks,
i.e., A is the highest ranked node and K is the lowest ranked node. Consider
the row for vertex F . It stores wildcard symbols for nodes A to F as the rank
of F is not higher than the rank of each of these nodes. The shortest path
between F and J is ⟨F,B,A,D, J⟩ and the highest ranked via node A on this
path is stored in the CVPD. For the remaining nodes in this row (i.e., G, H,
I, and K), the highest via node on the shortest path from F to these nodes
is F itself. Therefore, F is stored for these nodes. The RLE compression of
this row R(F) gives [1F:10A:11F]. We remark that, in practice, the columns
of the CVPD (and CPD) are ordered following a Depth-First Search (DFS)
order to achieve better compression. However, for the sake of simplicity, in our
examples, we show the columns ordered according to their betweenness ranks
(A to K).

Given the CVPD, for any pair of vertices u and v, we can obtain the highest
ranked node on the shortest path between u and v using the compressed row
of u (if u <B v) or using the compressed row of v (if v <B u).

Distance Labels (DL): For each vertex u, we store a list of distance labels
denoted asDL(u). Specifically,DL(u) contains a distance label for every v ∈ V
for which: 1) u <B v; and 2) u is the highest ranked vertex on the shortest
path between u and v. Each distance label in DL(u) is a triplet (v, d(u, v), p)
where p is the first vertex on the shortest path from v to u. The labels in each
DL(u) are sorted according to the betweenness ranks of vertices v which allows
finding the label of v in DL(u) in logarithmic time. To reduce the number of
distance labels, if u and v are co-visible, we do not store the distance label for
v in DL(u). For such u and v, at query time, a binary search can be conducted
on DL(u) and if v was expected to be in DL(u) but is not found, it implies
that u and v are co-visible and the Euclidean distance between them can be
computed on-the-fly (as we show later in Example 5).

Example 4 Table 4 shows the distance labels for all vertices in Figure 4. As
shown in Table 3, F is the highest ranked via node on the shortest path from F
to each of G, H, I and K (see row F in Table 3). Since G and I are visible from
F , the distance labels to them are not added. Therefore, we add in DL(F) the
distance labels to H and K (see row F in Table 4). The label (H, 60, G) in
DL(F) indicates that the distance between F and H is 60 and the first vertex
on the shortest path from H to F is G.

Given the CVPD+DL, the shortest distance d(u, v) can be efficiently com-
puted as follows. Without loss of generality, assume u <B v. First, the highest
via node h on the shortest path between u and v is found using a binary
search on the compressed row of u in the CVPD. Then, the distances d(u, h)

16 Lingxiao Li et al.

A B C D E F G H I J K

A * A A A A A A A A A A
B * * B A B B B B B A B
C * * * A B C C B C A C
D * * * * A A A D A D A
E * * * * * B E E B E B
F * * * * * * F F F A F
G * * * * * * * G G G G
H * * * * * * * * G H B
I * * * * * * * * * A I
J * * * * * * * * * * A
K * * * * * * * * * * *

Table 3 Compressed Via-Path Database (CVPD)

Distance labels

A (F, 33, B), (G, 34, E), (I, 49, F), (J, 39, D), (K, 43, C)
B (H, 42, E), (I, 41, F), (K, 37, C)
C (I, 32, K)
D (H, 29, J)
E (J, 45, H)
F (H, 60, G), (K, 28, I)
G (J, 49, H), (K, 51, I)
H
I
J
K

Table 4 Distance labels

and d(v, h) are obtained from DL(h) using two binary searches5 to find the
labels (u, d(u, h), p) and (v, d(v, h), p′), and d(u, v) = d(u, h) + d(v, h). Note
that this requires conducting at most three binary searches (one on the com-
pressed row of u and two on DL(h)). To obtain the shortest path, the first
moves can be used to recursively recover the path. For example, to obtain the
path from u to h, the first vertex p is obtained from the label (u, d(u, h), p).
Then, the label of p is found in DL(h) and this process continues until h is
reached. The label of p can be obtained using another binary search. Alterna-
tively, with each label (u, d(u, h), p) we can store an additional value pi which
corresponds to the position (i.e., index) of the label of p in DL(h) (or -1 if
p is not in DL(h) because it is visible from h). This allows obtaining each
successive label in O(1) resulting in O(e) time to recover the whole path.

Example 5 Consider our running example and assume that d(F, J) is to be
computed. We conduct a binary search on CVPD on row F and find the

5 For some highest ranked nodes, the distance labels can be stored using O(V) space so
that the labels can be found in O(1) instead of logarithmic time.

Efficiently Computing Alternative Paths in Game Maps 17

A B C D E F G H I J K

A * - - - - - - D C - F
B * * - - - - - D C E F
C * * * - - I I D - E -
D * * * * - - H - C - F
E * * * * * - - - C A F
F * * * * * * - D - G -
G * * * * * * * - - A -
H * * * * * * * * D - G
I * * * * * * * * * G -
J * * * * * * * * * * E
K * * * * * * * * * * *

Table 5 Compressed 2nd Via-Path Database (CVPD2)

highest via node A on sp(F, J). Then, we conduct two binary searches on
DL(A) to find the labels corresponding to F and J : (F, 33, B); and (J, 39, D).
Here, d(F, J) = d(F,A) + d(J,A) = 33 + 39 = 72. The shortest paths from
F to A and J to A are obtained to recover the path. For example, the label
(F, 33, B) indicates that the first vertex on the shortest path from F to A is
B. Next, the label of B is searched in DL(A) which is not found indicating
B and A are co-visible. Note that with the label (F, 33, B) we can store the
index of B in DL(A) (i.e., −1 in this case indicating that the label of B is not
present) which helps avoiding a binary search. The shortest path from J to A
is recovered similarly.

4.1.2 Compressed i-th Via-Path Database (CVPDi):

Now, we present a generalisation of the CVPD called Compressed i-th Via-
Path Database (denoted as CVPDi). While a CVPD records the highest
ranked node on the shortest path between u and v, a CVPDi stores the highest
ranked node on the i-th longest plateau between u and v. We ignore the zero
length plateaus (i.e., consisting of only a single vertex), and store a special
symbol “-” in CVPDi for such cases. Since i-th longest plateau between u and
v is the same as the i-th longest plateau between v and u, we store the highest
ranked via node in the row of u only if u <B v. It can be shown that the
shortest path between u and v is the longest plateau between u and v. There-
fore, CVPD is sometimes denoted as CVPD1 hereafter. In total, we create m
CVPDis denoted as CVPD1,· · · , CVPDm. In our experiments, we evaluate
the effect of m on preprocessing time, storage cost and query performance.

Example 6 Table 5 shows CVPD2 for our running example. Consider the row
F . Similar to CVPD, we store “*” for nodes A to F . The second longest plateau
between F and H is ⟨D,J⟩ and CVPD2 stores the highest ranked node D on
this plateau. Similarly, the second longest plateau between F and J is ⟨G,H⟩
and we store the highest ranked node G on this plateau. For other nodes, we

18 Lingxiao Li et al.

store “-” as the second longest plateaus between F and these nodes contain
only a single vertex each.

Given a CVPDi, we can obtain the highest via node – the highest ranked
node n on the i-th plateau between u and v – using a binary search on CVPDi.
The via-path between u and v passing through n (i.e., sp(u, n)⊕ sp(n, v)) and
its length can then be obtained using CVPD+DL as described earlier.

4.1.3 Advantages of CVPDis and DL:

A major advantage of the proposed CVPDis in the context of alternative
pathfinding is that these can be used to efficiently obtain the highest ranked
nodes on i longest plateaus between each pair of vertices visible from s and
t. Such vertices are likely to be on high-quality alternative paths between
s and t because longer plateaus typically generate better quality alternative
paths [29]. CVPD+DL can then be used to efficiently recover these paths
and/or find their lengths. While traditional CPDs can be used to recover the
paths, CVPD+DL has some advantages. Firstly, the traditional CPD needs to
recover the whole shortest path in order to find the distance d(u, v). On the
other hand, CVPD+DL can find d(u, v) in at most three binary searches. Sec-
ondly, the CPD recovers the shortest path by recursively finding first moves
which requires O(e log r) whereas CVPD+DL recovers the shortest path in
O(e) once the shortest distance has been computed in logarithmic time. Fur-
thermore, to obtain each successive first move, CPDs need to do binary look up
in different rows of the CPD. In contrast, CVPD+DL can recover the shortest
path using a single row DL(h) resulting in fewer cache misses.

4.1.4 Advantages Compared to Hub Labels:

Traditional hub labeling approaches [39] store a set of hub labels for each vertex
v such that d(u, v) can be computed by finding the common hub nodes in the
labels of u and v. Finding all common hub nodes requires linear search on both
the labels of u and v with complexity O(|HL(u)| + |HL(v)|) where |HL(x)|
is the number of hub labels stored for a vertex x. In contrast, CVPD+DL
does not need to find the common hub labels. Instead, the highest via node
is found using a binary search on the compressed row of u assuming u <B v.
Also, to recover the shortest paths, the hub labeling approaches need to re-
cursively obtain successors which requires accessing hub labels for different
nodes (resulting in potentially more cache misses) wheres CVPD+DL can re-
cover the shortest path using a single row DL(h). In the context of alternative
pathfinding which is our main focus, traditional hub labeling cannot be used
(or trivially extended) because the number of common hub nodes between two
nodes may be less than k (and, even if there are at least k common hub nodes,
they may not generate high-quality alternative paths as the hub nodes are not
selected with an aim to generate alternative paths).

Efficiently Computing Alternative Paths in Game Maps 19

Algorithm 1: Efficient Alternative Pathfinding
Input : s; t; ϵ; θ: dissimilarity threshold
Output: a set P containing up to k alternative paths

1 P ← ∅;
2 if s and t are co-visible then
3 P ← P ∪ ⟨s, t⟩;
4 Vs ← get vertices visible from s ;
5 Vt ← get vertices visible from t ;
6 V iaNodes← ∅;
7 for each u ∈ Vs do
8 for each v ∈ Vt do
9 for i in 1 to m do

10 n← CVPDi(u, v);
11 V iaNodes← V iaNodes ∪ n;

12 V Paths← ∅;
13 for each n ∈ V iaNodes do
14 use CVPD+DL, Vs and Vt to get sp(s, n) and sp(n, t);
15 vp← sp(s, n)⊕ sp(n, t);
16 if vp is taut and |vp| ≤ d(s, t)× ϵ then
17 Add vp to V Paths ;

18 for each vp ∈ V Paths in asc. order of length do
19 if 1− Sim(P ∪ vp) ≥ θ then
20 P ← P ∪ vp;
21 return P if it contains k paths;

22 return P;

4.2 Online Query Processing

4.2.1 Algorithm

Details of our query processing algorithm are shown in Algorithm 1. If s and
t are co-visible (which can be checked using ray shooting or Polyanya [15]),
the path ⟨s, t⟩ is added to the set of alternative paths P. Then, Polyanya is
employed (as described in [53]) to retrieve the sets of convex vertices visible
from s and t, denoted as Vs and Vt, respectively. The algorithm then utilises
the CVPDis to obtain a set of via nodes denoted as V iaNodes (lines 6 to 11).
Specifically, for each pair of visible vertices u and v, the algorithm uses the
CVPDis to obtain the highest i-th via nodes and adds these to V iaNodes. In
the experiments, we evaluate the effect of m, the number of CVPDis used by
the algorithm. We remark that although the maximum number of nodes in
V iaNodes is |Vs| × |Vt| ×m, in practice, the number of nodes in V iaNodes is
very small (less than 10 in most cases in our experiments) because the highest
ranked nodes usually are the same between many pairs of visible vertices.

Once V iaNodes are found, the algorithm accesses each via node n and uses
CVPD+DL to obtain the via-path sp(s, n) ⊕ sp(n, t). If the via-path is taut
and its length is not greater than d(s, t)× ϵ, it is added to a list of via paths
V Paths (the candidate alternative paths). Finally, the algorithm accesses each
via path in ascending order of their lengths, and if its dissimilarity with the
existing paths in P is at least θ, it is added to P. Although any dissimilarity

20 Lingxiao Li et al.

function can be employed, we compute the dissimilarity of a set of paths P
as 1 − Sim(P) (see Eq. (3) in Section 2). The algorithm returns P when it
contains k paths or when the algorithm terminates.

We include many optimisations to the basic algorithm described above.
Specifically, we remove the dead-end and non-taut vertices from Vs and Vt as
discussed in [53]. Also, the vertices in Vs (resp. Vt) are accessed in ascending
order of d(s, u)+EDist(u, t) (resp. d(t, v)+EDist(v, s)) to obtain the via nodes
between more promising nodes earlier and, instead of accessing all nodes in
Vs and Vt, we stop after accessing at most N nodes each from Vs and Vt. We
evaluate the effect of N in experiments.

4.2.2 Extending to other objective functions

Similar to the existing works in road networks, Algorithm 1 primarily aims
to minimise the path lengths while satisfying a certain dissimilarity criterion.
However, different users may have different requirements, e.g., one user may
define a multi-objective function as weighted sum of different measures (e.g.,
similarity, length, bounded stretch) and may want to retrieve alternative paths
with the smallest weighted sum. On the other hand, another user may want
to minimise one particular measure while imposing constraints on the other
measures, e.g., return alternative paths with the smallest total length such
that path similarity is at most 0.5 and bounded stretch is at most 0.3. Algo-
rithm 1 can be easily adapted to meet the demands of these different users.
Specifically, at line 18, the algorithm currently accesses the candidate paths
V Paths in ascending order of lengths and, at line 19, filters a path if adding it
will violate the path similarity constraint. If the objective function is weighted
sum, the algorithm can process the candidate paths in ascending order of their
weighted sum at line 18, and apply additional filters at line 19 if needed (e.g., if
constraints on bounded stretch are required by the user, the path that violates
the bounded stretch constraint can be filtered).

5 Experiments

5.1 Settings

Following the experimental settings of previous works on pathfinding in game
maps, we conduct experiments on the widely used benchmarks6 with a total
of 298 game maps, as described in [57]. The benchmarks contain 67 maps from
Dragon Age II (DA), 156 maps from Dragon Age Origins (DAO), and 75 maps
from Baldur’s Gate II (BG) (see Table 6 which also shows the total number
of queries for each benchmark, average number of vertices in each map and
average number of convex vertices in each map).

Algorithm 1 is shown as CVPD(N) in the experimental results where the
value of N indicates the maximum number of vertices processed from each of

6 https://github.com/nathansttt/hog2

https://github.com/nathansttt/hog2

Efficiently Computing Alternative Paths in Game Maps 21

Benchmark Stats
Build

Memory (MB)

#M #Q #V #CV Time CVPD1 CVPD2 CVPD3 DL

DA 67 68K 1183 611 0.020 0.436 0.058 0.055 0.132

DAO 156 159K 1728 927 0.209 1.744 0.272 0.312 0.387

BG 75 93K 1295 668 0.074 0.978 0.138 0.153 0.217

Table 6 Benchmark stats include total # of maps (#M) and total # of queries (#Q) in
each benchmark, and average # of vertices (#V) and convex vertices (#CV) per map. For
each benchmark, we also show average build time (mins) per map for constructing three
CVPDis and DL as well as average memory (MB) per map for the three CVPDis and DL.

Vs and Vt at lines 7 and 8. We construct three CVPDis and evaluate the effect
of using different numbers of CVPDis in the experiments. We evaluate our al-
gorithm, CVPD(N), against some of the most well-known existing techniques:
Plateaus, Dissimilarity, and Penalty which are shown as Pla, Dissim, and Pen,
respectively, in the results.

We set the penalty factor for the Penalty approach to 1.4. The dissimilar-
ity threshold θ for Dissimilarity and CVPD(N) was set to 0.6. The penalty
factor and dissimilarity threshold were selected after trying different values
and choosing the best values. ϵ was set to 1.5 for each approach. The default
value of k was set to 3.

In addition to comparison with the three alternative pathfinding algorithms
mentioned above, we also included Polyanya [15] (displayed as Poly) as a
competitor. Polyanya is the state-of-the-art online shortest path algorithm in
game maps. Please note that Polyanya only finds the shortest path and not the
alternative paths. However, we included Polyanya in the experimental study
to demonstrate the overhead cost of finding the alternative paths compared to
only finding the shortest path. The source code of Polyanya was provided by
its authors7.

All algorithms were implemented in C++ and compiled with GNU GCC
4.8. We conduct experiments on a Linux (64-bit) dedicated NeCTAR server
m1.xxlarge instance with Intel Core Processor 2.9GHz 16-core CPUs and 16GB
DDR4-1866 memory.

We evaluate the algorithms considering the pre-processing cost (build time
and memory required), query runtimes, and the quality of the alternative paths
found by each algorithm. In order to evaluate the quality of the returned al-
ternative paths P, we use bounded stretch BS(P) (lower the better), local
optimality LO(P) (higher the better), and similarity Sim(P) (lower the bet-
ter) as defined in Section 2.2. In our experiments, we report average values
over all queries for each of these measures. In addition, we report the max-
imum of BS(P) and Sim(P). Note that maximum of BS(P) and Sim(P)
correspond to the worst-case bounded stretch and similarity for an algorithm
across all queries. Furthermore, we report the minimum of LO(P) consider-
ing all queries, which represents the worst-case for local optimality. In some
cases, an approach may only be able to return less than k alternative paths.

7 https://bitbucket.org/mlcui1/polyanya

https://bitbucket.org/mlcui1/polyanya

22 Lingxiao Li et al.

Such an approach may get better quantitative scores only because it gener-
ated less than k alternative paths which is unfair. For this reason, we only
take into consideration the queries that return exactly k alternative paths for
all approaches.

5.2 Results

5.2.1 Preprocessing Time and Memory

Table 6 shows the average build time (in minutes) per map for constructing
three CVPDis and the distance labels (DL). It also shows the memory required
by each CVPDi and DL (in MB). The results show that the build time and
the memory required by the CVPDs and DL are quite small. CVPD1 con-
sumes significantly more memory than CVPD2 and CVPD3. This is because
for CVPD2 and CVPD3, for many pairs of vertices especially those that are
close to each other, the 2nd (or 3rd) plateaus do not exist resulting in many
cells having the special symbol “-” which leads to better compression.

5.2.2 Query runtimes

Figure 5 demonstrates query runtimes for all algorithms on DA, DAO, and
BG maps (please note log-scale on y-axis). In each figure, the x-axis ranks
the queries roughly in the order of their difficulty. Specifically, following the
existing shortest pathfinding approaches, we sort the queries based on the
number of nodes expansion required by the standard A* search to solve them
(which serves as a proxy of how challenging a query is). The x-axis denotes
the percentile ranks of queries in this order. As Figure 5 shows, Plateaus and
Dissimilarity exhibit almost equal query times because both need to compute
the shortest paths trees rooted at the source and target which is the dominant
cost. The penalty is more expensive given the fact that it requires the iterative
computation of k unique paths. We show the performance of CVPD for N =
15, N = 30 and N = All, which refers to the case when it processes all
visible vertices from both ends. CVPD is more than an order of magnitude
faster than Plateaus, Dissimilarity, and Penalty. Furthermore, its query time
is comparable to (or even better than) Polyanya for the more challenging
queries. We also show the performance of our algorithm when it uses one,
two, or three CVPDis. For example, Figures 5(a), 5(b) and 5(c) show the
runtimes of CVPD when it uses one, two and three CVPDis, respectively. As
expected, the query processing times increase as the number of CVPDis used
by the algorithms increases (please note that y-axis is in log-scale). However, in
all cases, CVPD significantly outperforms the existing alternative pathfinding
algorithms.

Efficiently Computing Alternative Paths in Game Maps 23

(a) DA – Using 1 CVPDi (b) DA – Using 2 CVPDis (c) DA – Using 3 CVPDis

(d) DAO – Using 1 CVPDis (e) DAO – Using 2 CVPDi (f) DAO – Using 3 CVPDis

(g) BG – Using 1 CVPDi (h) BG – Using 2 CVPDi (i) BG – Using 3 CVPDi

Fig. 5 x-axis shows the percentile ranks of queries in number of node expansions needed
by A* search to solve them.

5.2.3 Varying K

Figures 6(a), 6(b) and 6(c) display the average query processing time when k
is varied from 2 to 5. The cost of Plateaus and Dissimilarity is independent of
k. The reason is that the dominant cost of those two algorithms is construct-
ing the forward and backward shortest path trees and this construction cost
does not depend on the value of k. The cost of Penalty is positively associated
with k. The reason lies in the fact that the algorithm involves k iterations to
get the result. We only run Polyanya for k = 1 as the algorithm only gener-
ates the shortest path (and therefore is expected to be faster than the other
algorithms that generate k alternative paths). We show the performance of
CVPD for N = 15, N = 30, and N = All when it uses two CVPDis. Again,

24 Lingxiao Li et al.

(a) DA (b) DAO (c) BG

Fig. 6 Effect of varying k.

CVPD outperforms the other alternative pathfinding algorithms by more than
an order of magnitude and has performance comparable to Polyanya. Inter-
estingly, CVPD outperforms Polyanya when N = 15 and N = 30 on the DAO
benchmark.

5.2.4 Quality of alternative paths

Table 7 compares the quality of alternative paths that different algorithms
generate. As the table shows, the quality of alternative paths generated by
our approach is comparable to the existing approaches. However, as our ex-
perimental study showed, our approach is significantly faster than the existing
approaches, i.e., by more than an order of magnitude. The average bounded
stretch produced by our approach outperforms Plateaus and is similar to that
of Dissmiliarity and Penalty. With regard to average similarity, our approach
sits at the second rank, following Penalty which performs the best. However,
Penalty underperforms in terms of the worst-case (i.e., max) similarity (with
maximum similarity around 0.9), whereas our approach and Dissimilarity en-
sure a maximum similarity level at no more than 0.4. In terms of local opti-
mality, our algorithm outperforms the other algorithms. Dissimilarity is the
best approach in terms of average path length followed by our approach. We
note that using more CVPDis reduces the average path length of our approach
but does not have a clear benefit in terms of the other measures.

6 Conclusions

To the best of our knowledge, we present the first comprehensive study on
computing alternative pathfinding in game maps. First, we adapt the previous
works, specifically designed for finding alternative paths in road networks, to
find the alternative paths in game maps. Then, based on a web-based sys-
tem that allows users visualise the paths generated by different approaches,
we conduct a user study which demonstrates that these previous approaches
are capable of generating high-quality alternative paths in game maps. One

Efficiently Computing Alternative Paths in Game Maps 25

Algorithm
BS(P) Sim(P) LO(P)

Length
AVG MAX AVG MAX AVG MIN

DA

Dissimilarity 1.086 2.087 0.188 0.400 0.352 0.008 121.5

Plateau 1.216 3.335 0.232 0.882 0.261 0.008 125.4

Penalty 1.157 7.000 0.129 0.953 0.354 0.008 124.1

1-CVPD(15) 1.096 2.396 0.151 0.397 0.398 0.008 123.1

1-CVPD(30) 1.091 2.396 0.153 0.397 0.401 0.008 123.0

1-CVPD(All) 1.091 2.396 0.153 0.397 0.401 0.008 123.0

2-CVPD(15) 1.099 7.000 0.158 0.397 0.376 0.008 122.6

2-CVPD(30) 1.094 7.000 0.160 0.397 0.378 0.008 122.5

2-CVPD(All) 1.094 7.000 0.160 0.397 0.378 0.008 122.5

3-CVPD(15) 1.099 7.000 0.164 0.398 0.361 0.008 122.3

3-CVPD(30) 1.096 7.000 0.164 0.398 0.364 0.008 122.2

3-CVPD(All) 1.096 7.000 0.164 0.398 0.363 0.008 122.2

DAO

Dissimilarity 1.050 3.481 0.162 0.400 0.336 0.005 124.9

Plateau 1.207 6.859 0.184 0.931 0.190 0.005 132.7

Penalty 1.103 19.00 0.083 0.931 0.335 0.005 126.9

1-CVPD(15) 1.065 5.472 0.125 0.400 0.347 0.005 126.4

1-CVPD(30) 1.059 5.472 0.129 0.400 0.351 0.005 126.2

1-CVPD(All) 1.058 5.472 0.130 0.400 0.351 0.005 126.2

2-CVPD(15) 1.063 5.472 0.131 0.400 0.337 0.005 126.1

2-CVPD(30) 1.058 5.472 0.133 0.400 0.343 0.005 125.8

2-CVPD(All) 1.057 5.472 0.135 0.400 0.342 0.005 125.8

3-CVPD(15) 1.063 5.472 0.136 0.400 0.333 0.005 125.8

3-CVPD(30) 1.059 5.472 0.137 0.400 0.340 0.005 125.6

3-CVPD(All) 1.057 5.472 0.139 0.400 0.340 0.005 125.6

BG

Dissimilarity 1.092 2.903 0.136 0.400 0.342 0.009 282.1

Plateau 1.224 4.454 0.137 0.876 0.252 0.009 298.0

Penalty 1.088 5.333 0.089 0.831 0.343 0.009 286.7

1-CVPD(15) 1.106 4.106 0.114 0.398 0.335 0.009 285.5

1-CVPD(30) 1.098 4.106 0.116 0.398 0.350 0.009 284.9

1-CVPD(All) 1.096 4.106 0.117 0.398 0.351 0.009 284.8

2-CVPD(15) 1.100 3.672 0.121 0.398 0.337 0.009 284.2

2-CVPD(30) 1.094 2.399 0.122 0.399 0.350 0.009 283.8

2-CVPD(All) 1.093 2.399 0.123 0.399 0.351 0.009 283.8

3-CVPD(15) 1.098 3.672 0.125 0.400 0.337 0.009 283.5

3-CVPD(30) 1.092 2.399 0.126 0.399 0.349 0.009 283.2

3-CVPD(All) 1.091 2.399 0.127 0.399 0.349 0.009 283.2

Table 7 Quality of alternative paths on DA, DAO and BG maps. We show BS(P) (smaller
the better), Sim(P) (smaller the better), LO(P) (larger the better) and average path length.
Best values for each column are shown in bold. x-CVPD(N) corresponds to the case when
x CVPDis are used by our algorithm and N vertices are processed from each of Vs and Vt.

limitation of the existing techniques is their high query runtimes. To address

26 Lingxiao Li et al.

this, we propose an efficient algorithm to generate alternative paths using a
novel variation of CPDs called Compressed Via-Path Database (CVPD). Our
experimental study shows that the proposed approach is more than an order
of magnitude faster than the existing alternative pathfinding approaches and
is capable of generating high-quality paths of similar quality.

Declarations

Ethical approval. The research was considered by the Monash University
Human Research Ethics Committee. The Committee was satisfied that the
research meets the requirements of the National Statement on Ethical Conduct
in Human Research and granted approval.
Competing interests. The authors have no competing interests as defined
by Springer, or other interests that might be perceived to influence the results
and/or discussion reported in this paper.
Authors’ contributions. All authors contributed to the algorithm devel-
opment, problem formulation and experiments design. L.L. implemented the
algorithms and the web-based system. L.L. conducted the user study and the
experiments. L.L. and M.C. wrote the main manuscript text. L.L. prepared
all the figures. All authors reviewed the manuscript.
Funding. Muhammad Aamir Cheema is supported by Australian Research
Council (ARC) FT180100140. Hua Lu is supported by Independent Research
Fund Denmark (No. 8022-00366B).
Availability of data and materials. The web-based system is publicly ac-
cessible at http://aamircheema.com/paths_games/. The game maps bench-
mark is also publicly accessible as noted in Section 5.

References

1. Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road networks:
a journey in experimentation and in-memory implementation. PVLDB pp. 492–503
(2016)

2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algo-
rithm for shortest paths in road networks. In: International Symposium on Experimental
Algorithms. Springer (2011)

3. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative routes in road
networks. Journal of Experimental Algorithmics (JEA) 18, 1–3 (2013)

4. Akgün, V., Erkut, E., Batta, R.: On finding dissimilar paths. European Journal of
Operational Research 121(2), 232–246 (2000)

5. Akiba, T., Iwata, Y., Kawarabayashi, K.i., Kawata, Y.: Fast shortest-path distance
queries on road networks by pruned highway labeling. In: ALENEX (2014)

6. Banavar, J.R., Maritan, A., Rinaldo, A.: Size and form in efficient transportation net-
works. Nature 399(6732), 130–132 (1999)

7. Botea, A.: Fast, optimal pathfinding with compressed path databases. In: SOCS (2012)
8. Brandes, U., Pich, C.: Centrality estimation in large networks. International Journal of

Bifurcation and Chaos 17(07), 2303–2318 (2007)
9. Cheema, M.A.: Indoor location-based services: challenges and opportunities. SIGSPA-

TIAL Special 10(2), 10–17 (2018)

http://aamircheema.com/paths_games/

Efficiently Computing Alternative Paths in Game Maps 27

10. Chen, B.Y., Lam, W.H., Sumalee, A., Li, Q., Shao, H., Fang, Z.: Finding reliable shortest
paths in road networks under uncertainty. Networks and spatial economics 13(2), 123–
148 (2013)

11. Chen, Y., Bell, M.G., Bogenberger, K.: Reliable pretrip multipath planning and dynamic
adaptation for a centralized road navigation system. IEEE Transactions on Intelligent
Transportation Systems (2007)

12. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U.: Exact and approximate algo-
rithms for finding k-shortest paths with limited overlap. In: 20th International Confer-
ence on Extending Database Technology: EDBT 2017, pp. 414–425 (2017)

13. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U., Blumenthal, D.B.: Finding k-
dissimilar paths with minimum collective length. In: SIGSPATIAL (2018)

14. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U., Blumenthal, D.B.: Finding k-
shortest paths with limited overlap. The VLDB Journal pp. 1–25 (2020)

15. Cui, M., Harabor, D.D., Grastien, A.: Compromise-free pathfinding on a navigation
mesh. In: Proceedings of the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 496–502.
ijcai.org (2017)

16. Dees, J., Geisberger, R., Sanders, P., Bader, R.: Defining and computing alternative
routes in road networks. CoRR abs/1002.4330 (2010). URL http://arxiv.org/abs/

1002.4330
17. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Math-

ematik 1, 269–271 (1959)
18. Döbler, H., Scheuermann, B.: On computation and application of k most locally-optimal

paths in road networks (2016)
19. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with char-

acter embeddings for hay fever detection from twitter. Health information science and
systems 7, 1–7 (2019)

20. Du, J., Shen, B., Cheema, M.A.: Ultrafast euclidean shortest path computation using
hub labeling. In: AAAI (2023)

21. Eppstein, D.: Finding the k shortest paths. SIAM Journal on computing 28(2), 652–673
(1998)

22. Ernst, P., Meng, C., Siu, A., Weikum, G.: Knowlife: a knowledge graph for health and
life sciences. In: 2014 IEEE 30th International Conference on Data Engineering, pp.
1254–1257. IEEE (2014)

23. Funke, S., Nusser, A., Storandt, S.: On k-path covers and their applications. The VLDB
Journal 25(1), 103–123 (2016)

24. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster
and simpler hierarchical routing in road networks. In: International Workshop on Ex-
perimental and Efficient Algorithms, pp. 319–333. Springer (2008)

25. Grusho, A.A., Abaev, P.O., Shorgin, S.Y., Timonina, E.E.: Graphs for information
security control in software defined networks. In: AIP Conference Proceedings, vol.
1863, p. 090002. AIP Publishing LLC (2017)

26. Häcker, C., Bouros, P., Chondrogiannis, T., Althaus, E.: Most diverse near-shortest
paths. In: Proceedings of the 29th International Conference on Advances in Geographic
Information Systems, pp. 229–239 (2021)

27. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac ar-
rhythmia detection from iot-based ecgs. World Wide Web 23, 2835–2850 (2020)

28. Islam, M.R., Kabir, M.A., Ahmed, A., Kamal, A.R.M., Wang, H., Ulhaq, A.: Depression
detection from social network data using machine learning techniques. Health Inf. Sci.
Syst. 6(1), 8 (2018)

29. Jones, A.H.: Method of and apparatus for generating routes (2012). US Patent 8,249,810
30. Kallmann, M., Kapadia, M.: Navigation meshes and realtime dynamic planning for

virtual worlds. In: ACM SIGGRAPH 2014 Courses, p. 3. ACM Press (2014)
31. Kobitzsch, M.: An alternative approach to alternative routes: Hidar. In: European

Symposium on Algorithms, pp. 613–624. Springer (2013)
32. Kobitzsch, M., Radermacher, M., Schieferdecker, D.: Evolution and evaluation of the

penalty method for alternative graphs. In: ATMOS-13th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems-2013, vol. 33,
pp. 94–107. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2013)

http://arxiv.org/abs/1002.4330
http://arxiv.org/abs/1002.4330

28 Lingxiao Li et al.

33. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On trip planning queries
in spatial databases. In: International symposium on spatial and temporal databases,
pp. 273–290. Springer (2005)

34. Li, L., Cheema, M.A.: Alternative pathfinding in game maps and indoor venues. ICAPS
(2021)

35. Li, L., Cheema, M.A., Ali, M.E., Lu, H., Li, H.: Diverse shortest paths in game maps:
A comparative user study and experiments. In: Australasian Database Conference, pp.
76–88. Springer (2022)

36. Li, L., Cheema, M.A., Ali, M.E., Lu, H., Taniar, D.: Continuously monitoring alternative
shortest paths on road networks. Proceedings of the VLDB Endowment 13(12), 2243–
2255 (2020)

37. Li, L., Cheema, M.A., Lu, H., Ali, M.E., Toosi, A.N.: Comparing alternative route
planning techniques: A comparative user study on melbourne, dhaka and copenhagen
road networks. IEEE Transactions on Knowledge and Data Engineering (2021)

38. Li, Y., Cao, B., Peng, M., Zhang, L., Zhang, L., Feng, D., Yu, J.: Direct acyclic graph-
based ledger for internet of things: Performance and security analysis. IEEE/ACM
Transactions on Networking 28(4), 1643–1656 (2020)

39. Li, Y., Yiu, M.L., Kou, N.M., et al.: An experimental study on hub labeling based
shortest path algorithms. Proceedings of the VLDB Endowment 11(4), 445–457 (2017)

40. Liu, H., Jin, C., Yang, B., Zhou, A.: Finding top-k shortest paths with diversity. IEEE
Transactions on Knowledge and Data Engineering (2017)

41. Ltd, C.V.I.T.: Choice Routing. http://www.camvit.com (2005)
42. Luo, Z., Li, L., Zhang, M., Hua, W., Xu, Y., Zhou, X.: Diversified top-k route planning

in road network. Proceedings of the VLDB Endowment 15(11), 3199–3212 (2022)
43. Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road networks.

In: International Symposium on Experimental Algorithms, pp. 260–270. Springer (2012)
44. Moghanni, A., Pascoal, M., Godinho, M.T.: Finding shortest and dissimilar paths. In-

ternational Transactions in Operational Research 29(3), 1573–1601 (2022)
45. Nettleton, D.F.: Data mining of social networks represented as graphs. Computer Sci-

ence Review 7, 1–34 (2013)
46. Oh, S., Leong, H.W.: Edge n-level sparse visibility graphs: Fast optimal any-angle

pathfinding using hierarchical taut paths. In: Proceedings of the Tenth International
Symposium on Combinatorial Search, SOCS 2017, 16-17 June 2017, Pittsburgh, Penn-
sylvania, USA, pp. 64–72. AAAI Press (2017)

47. Ouyang, D., Yuan, L., Qin, L., Chang, L., Zhang, Y., Lin, X.: Efficient shortest path
index maintenance on dynamic road networks with theoretical guarantees. Proceedings
of the VLDB Endowment (2020)

48. Paraskevopoulos, A., Zaroliagis, C.D.: Improved alternative route planning. In: 13th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, ATMOS 2013, September 5, 2013, Sophia Antipolis, France, pp. 108–122 (2013)

49. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app recom-
mendation based on app permissions. World Wide Web 21(1), 89–104 (2018)

50. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In:
European Symposium on Algorithms, pp. 568–579. Springer (2005)

51. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: International Workshop
on Experimental and Efficient Algorithms, pp. 66–79. Springer (2007)

52. Shaikh, S., Rathi, S., Janrao, P.: Recommendation system in e-commerce websites: a
graph based approached. In: 2017 IEEE 7th International Advance Computing Confer-
ence (IACC), pp. 931–934. IEEE (2017)

53. Shen, B., Cheema, M.A., Harabor, D., Stuckey, P.J.: Euclidean pathfinding with com-
pressed path databases. In: IJCAI, pp. 4229–4235 (2020)

54. Shen, B., Cheema, M.A., Harabor, D.D., Stuckey, P.J.: Fast optimal and bounded sub-
optimal euclidean pathfinding. Artificial Intelligence p. 103624 (2021)

55. Strasser, B., Botea, A., Harabor, D.: Compressing optimal paths with run length en-
coding. Journal of Artificial Intelligence Research 54, 593–629 (2015)

56. Strasser, B., Harabor, D., Botea, A.: Fast first-move queries through run-length encod-
ing. In: Proceedings of the Seventh Annual Symposium on Combinatorial Search, SOCS
2014, Prague, Czech Republic, 15-17 August 2014. AAAI Press (2014)

http://www.camvit.com

Efficiently Computing Alternative Paths in Game Maps 29

57. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Transactions on Com-
putational Intelligence and AI in Games 4(2), 144–148 (2012)

58. Tao, Y., Sheng, C., Pei, J.: On k-skip shortest paths. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pp. 421–432 (2011)

59. Von Ferber, C., Holovatch, T., Holovatch, Y., Palchykov, V.: Public transport networks:
empirical analysis and modeling. The European Physical Journal B 68, 261–275 (2009)

60. Yen, J.Y.: Finding the k shortest loopless paths in a network. management Science
17(11), 712–716 (1971)

61. You, M., Yin, J., Wang, H., Cao, J., Wang, K., Miao, Y., Bertino, E.: A knowledge
graph empowered online learning framework for access control decision-making. World
Wide Web pp. 1–22 (2022)

62. Yu, Y., Wang, C., Zhang, L., Gao, R., Wang, H.: Geographical proximity boosted rec-
ommendation algorithms for real estate. In: WISE (2), Lecture Notes in Computer
Science, vol. 11234, pp. 51–66. Springer (2018)

	Introduction
	Preliminaries
	User Study
	Efficient Alternative Pathfinding Algorithm
	Experiments
	Conclusions

