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Abstract—The rapid development of emerging vehicular edge
computing (VEC) brings new opportunities and challenges for
dynamic resource management. The increasing number of edge
data centers, roadside units (RSUs), and network devices, how-
ever, makes resource management a complex task in VEC. On the
other hand, the exponential growth of service applications and
end-users makes corresponding QoS hard to maintain. Intent-
Based Networking (IBN), based on Software-Defined Networking,
was introduced to provide the ability to automatically handle and
manage the networking requirements of different applications.
Motivated by the IBN concept, in this paper, we propose a
novel approach to jointly orchestrate networking and computing
resources based on user requirements. The proposed solution
constantly monitors user requirements and dynamically re-
configures the system to satisfy desired states of the application.
We compared our proposed solution with the state-of-the-art
networking embedding algorithms using real-world taxi GPS
traces. Results show that our proposed method is significantly
faster (up to 95%) and can improve resource utilization (up to
76%) and the acceptance ratio of computing and networking
requests with various priorities (up to 71%). We also present
a small-scale prototype of the proposed intent management
framework to validate our solution.

Index Terms—Vehicular Edge Computing, Intent-based Net-
working, Software-Defined Networking, Resource Management,
Virtual Network Embedding

I. INTRODUCTION

The automotive industry is one of the fastest-growing

industries. In recent years, the increased use of onboard

microprocessors such as On-Board Units (OBUs) and sensors

technology has led to technological advancements that enabled

vehicles to provide various safety and driver assistance-related

systems. For example, modern cars can autonomously drive

to their destination, warn the driver of external hazards,

and avoid collisions. However, many of these applications’

growing demands for computational resources urge the use of
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Fig. 1: Vehicular Edge Computing Overview

the communication infrastructure and connection with Road

Side Units (RSUs) to offload the heavy computational tasks.

Moreover, vehicles are becoming increasingly connected, and

V2X (Vehicle to Everything) communications enable vehi-

cles to communicate with each other and the outside world,

allowing applications to go beyond internal functions and

provide improved awareness of impending events over a wider

area. For many conventional connected vehicles, the network

was only responsible for transferring data from vehicles to

the cloud. However, applications are evolving into a highly

distributed layer that resides directly within the network fabric.

In fact, it is crucial to support many real-time applications

and perform analytics at the edge as close as possible to the

data source, e.g., realtime time collision avoidance system on

autonomous vehicles. Consequently, Vehicular Edge Comput-

ing (VEC) [1], [2] has become the mainstream paradigm to

meet strict performance requirements such as response time

and network bandwidth of real-time applications.

With an increasing number of computational nodes, for



example, cloud, edge devices, vehicles, RSUs, and compute-

enabled network components, the networking operation do-

main in VEC is becoming more complex. Fig. 1 depicts

one such VEC scenario where mobile vehicles may estab-

lish a network connection with other vehicles (inter-vehicle

communication), RSUs, and access points (base stations). In

addition, RSUs can be interconnected to other RSUs or to

access points by either a wired or wireless network. Although

each vehicle may have extra computing resources in its OBU,

heavier computational workloads can be offloaded to the edge

data centers (EDCs). Thus, it is challenging to efficiently

orchestrate and manage the underlying networking and com-

puting resources based on various service requirements in such

a VEC environment. In other words, developing, deploying

and operating applications in VEC environments is not trivial.

Therefore, it is essential to create mechanisms to automatically

capture the applications’ deployment requirements (intents)

to activate and assure them network-wide. Existing solutions

try to address these issues mainly through service placement

approaches and task offloading techniques without taking

networks into consideration [3]. In this work, we aim to

bridge the gap between the deployment requirements of VEC

applications (business intent) and what the network delivers by

building required algorithms considering both the computing

and networking requirements of the applications.

Software-Defined Networking (SDN) is a technology that

helps tackle the network management and orchestration com-

plexity [4] and has been widely used in VEC and Mobile Edge

Computing (MEC) environments [5], [6]. SDN centralizes

the network’s control plane and provides automation, cost-

efficiency, programmability, and greater efficiency for network

management. In recent years, Intent-Based Networking (IBN)

based on SDN is also emerging to automate networks further.

It provides network intelligence by evoking a high-level intent,

detecting potential deviations from that intent, and prescribing

actions required to ensure that the intent is always satisfied,

such as link rerouting and service reallocation via migra-

tion [7]. Based on IBN techniques, the application provides

intents to indicate the desired network requirements, such as

network bandwidth and end-to-end delay.

Several industrial vendors, such as Cisco and VMWare,

also focus on the IBN agility for edge network management.

However, addressing only network resource requirements is

insufficient in VEC. It should include both computing and net-

working requirements to guarantee end-to-end service delay.

Furthermore, the network is dynamic at the edge, and failures

or congestion can occur in switches, links, RSUs, EDCs,

etc. A framework is required to automatically react to these

issues and requirements to consistently and reliably maintain

edge services operational. Following the industry trend, this

work proposes an intent-based manager to orchestrate both

networking and computing resources for VEC applications.

Intent can be considered a high-level, abstract declaration for

applications that describes their desired state or result [8]. For

example, a service provider may want an autonomous vehicle

to maintain low-latency and high-throughput connections for
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Fig. 2: Intent management framework

its image processing service. An intent can be compiled

into several service requests with resource requirements via

existing network templates and policy languages, such as PGA,

Kinectic, and Janus [8] or NLP models [9].

To the best of our knowledge, this is one of the earliest

efforts to install and support joint networking and computing

intents for VEC applications. Current Virtual Network Em-

bedding (VNE) algorithms [10]–[15] are inadequate for the

intent installation problem in VEC environments for multiple

reasons. Firstly, current VNE algorithms do not allow the

allocation of multiple virtual nodes to the same physical node,

negatively impacting resource utilization and the acceptance

rate. Additionally, traditional virtual network requests (VNR)

are treated as standalone, while an intent of a VEC application

may need to be compiled into multiple VNRs. Current VNE

algorithms also do not support adding location constraints as

needed by VEC intents, making them incapable of handling

the mobility aspect of the users/applications. Furthermore,

current VNE algorithms do not consider computing require-

ments within the intent framework and models. Lastly, current

VNE algorithms do not handle the installation of intents with

priorities. Simply assigning priorities to the intents does not

resolve the issue, as we also need to satisfy users’ Quality of

Service (QoS) requirements.

To address these problems, we propose an efficient online

algorithm for intent installation with different priorities while

considering both computing and networking-related properties.

The key contributions of the paper are as follows:

• We introduce the computing resource and location re-

quests into Intent-Based Networking for VEC.

• We propose a priority- and location-aware algorithms for

the installation and management of intents with different

priorities.

• We compare our proposed algorithm with the state-of-

the-art VNE algorithms in a large-scale simulation with

real-world data sets and edge networks.

• We implement and evaluate the proposed intent-based

edge computing with a real SDN controller on a Mininet

emulation platform.

II. SYSTEM OVERVIEW

In this section, we first showcase the proposed intent

management framework. Then we highlight the intent features

available to the applications running in a VEC environment.

Lastly, we discuss the intent life-cycle.

A. Intent Management Framework

Current IBN frameworks only allow the mapping of appli-

cation network resource requirements. In this paper, our goal is
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Fig. 3: Intent features and constraints

to extend the intent framework to allow the expression of both

compute and network elements along with application QoS.

Thus, we need to holistically manage the edge/cloud platform

for compute resources, orchestrate the container placements

for micro-services, and utilize the network controller to map

the virtual network. As shown in Fig. 2, by integrating SDN

controller (e.g. ONOS or OpenDayLight), edge and cloud

platform (e.g. OpenStack), and container orchestrator (e.g. Ku-

bernetes), we propose an intent-based manager to cohesively

orchestrate both networking and computing resources.

The applications’ intents are submitted to the intent-based

manager using a declarative manifest. The manager then

extracts the requirements of each intent to check whether the

intent can be installed with the existing compute and network

resource capacity. For a successful intent compilation, the ex-

tracted compute requirements from the intent are transformed

into a resource allocation task with the help of the edge/cloud

platform and the container orchestrator. The network request

is also transformed into a VNR and the manager instructs the

SDN controller to install the network intent.

B. Intent Features

Fig. 3 shows the features available to the application to be

expressed as per intent in the proposed intent management

framework, which are categorized in three groups as follows:

Node: An application/service can choose a set of nodes

(locations) where the service can be executed (location con-

straints). In addition, the compute resource requirements (e.g.,

vCPU, memory or storage) for the service can also be specified

(resource constraints).

Link: The application/service can choose the desired band-

width requirement and express the minimum expected latency

for the service to function correctly (network constraints).

Priority: As multiple services can be deployed across the

system with competing and conflicting interests, intent from

each service must have a priority specified while submitting

the intent. Thus, depending on the intent priority and the

QoS requirements, proper intent installation strategy and intent

failure handling mechanisms can be followed.

C. Intent Life-cycle

The proposed intent framework allows applications to spec-

ify both their network and compute resource requirements.

The intent manager accepts the intent specification requests

and compiles them into installable intents that require some

actions to meet the desired application state. Finally, when

the actions are carried out in both the network and compute

environments, some changes are made, for example, flow rules

being pushed to switches or compute resources reserved to

deploy a microservice on a node.
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Fig. 4: Intent lifecycle

Fig. 4 depicts the complete life-cycle for the intents in the

proposed framework. An intent can be in one of the following

states: Ready, Active, Suspending, Failed, Withdrawn, Termi-

nated (represented in oval shapes in the figure). The intent

manager takes the actions to make changes to the environment

and satisfy intent requirements. These actions are represented

with rectangular shapes. We provide a brief overview of the

key actions in the life-cycle of the intents.

Intent Submission: Intents are submitted by the applica-

tions/service providers to the intent management framework.

Upon receiving an intent asynchronously, the intent manager

transforms the intent into several compute and network re-

quests which can be used for the intent compilation phase.

Intent Compilation: The resource discovery is made by the

SDN controller and the VM/container orchestrator. The intent

manager can communicate with them to get regular updates

on network topology changes and the resource capacity of the

compute nodes. Thus, if the network and compute resources

are sufficient to handle the submitted intent, the intent will be

compiled successfully, and the intent state becomes Ready.

Otherwise, the intent state goes to the Failed state after

exhausting the sufficient retry attempts.

Intent Installation: A Ready intent can be installed in the

system by reserving both the network and compute resources,

such as compute and bandwidth for an application. When the

intent is installed successfully, the state is changed to Active.

Intent Recompilation: An Active intent might be sus-

pended by the application or due to a topology and resource

update. In this case, the intent state is Suspending, and it enters

the Intent Recompilation phase. If the desired system state

can be reached after a few recompilation attempts via link

remapping or service migration [7], then the intent re-enters

an Installation phase. Otherwise, the intent state is Failed.

Intent Withdrawal: An application can request at any time

to withdraw both an active or a failed intent. In this case,

the system withdraws the intent, and if the intent is active,

takes back all the allocated network and compute resources.

A Withdrawn intent can be resubmitted as a new intent based

on the intent requirement template.

Intent Deletion: While in the Withdrawn state, the appli-

cation can request to delete the intent requirement template

entirely. At this point, the intent state will be Terminated.

The retry threshold can be adaptively configured according

to the current edge conditions. In highly dynamic environ-

ments, a small threshold can result in a high failure ratio. A
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Fig. 5: An example of intents and compiled requests

large threshold, on the other hand, may cause a significant

number of intents to be reinstalled, resulting in an increase

in processing time. Furthermore, a large retry threshold can

improve the acceptance rate for high-priority intents.

III. SYSTEM MODEL

The phases of intent installations and contention resolutions

between the intents can be translated into an Online Virtual

Network Mapping or Virtual Network Embedding (VNE) prob-

lem. The acceptance ratio and average resource utilization are

critical parameters needed to be optimized.

Vehicular Edge Computing: VEC or a substrate net-

work can be modeled as a weighted undirected graph

G(N,L,AN , AL) including the global network hardware, net-

work links, edge devices and end users, where N denotes the

set of physical nodes and L denotes the set of the physical net-

work links. AN and AL denote attributes associated with nodes

and links, respectively. For concise modeling, we consider

CPU, memory capacities, and location constraints for node

attributes, and bandwidth and latency for link attributes. We

use P to denote all loop-free paths within the VEC network

and P k
uv to denote k shortest paths between node u and v.

Intents and requests: Let Im indicate the intent submitted

by the application/service m. Let πm denote the priority

of Intent Im. After the intent compiling process, Im can

be compiled into several virtual networking and computing

requests Rm
i where i denotes the ith requests of intent

Im. As a microservice architecture, each compiled request

of an intent can also be modeled as an undirected graph

Rm(Nm, Lm, Cm
N , Cm

L ), where Cm
N and Cm

L denote the set

of node and link constraints, such as the CPU, memory,

and location constraints for virtual nodes, and bandwidth and

latency for virtual links. For instance, in Fig. 5, intent1 is

compiled into two requests, where computing requirement of

virtual node v11 is 5. Bandwidth and delay requirement of the

virtual link between v11 and v12 are 1 and 10, respectively.

Virtual nodes v11 and v14 should be allocated in physical node

V 1, i.e., user node. As a result, if a mobile user reconnects to

another EDC, virtual links associated with v11 and v14 need to

be rerouted or other virtual nodes associated with these links

might need to be relocated accordingly.

Location constraints Cm
N (v) = n(v) of a virtual node v can

be divided into fixed and mobility-related location constraints.

For the fixed location constraint, the virtual node location

constraint is associated with a stationary physical node, such as

a certain roadside unit, gateway, or edge data center. However,

if location constraints are associated with mobile end-users
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Fig. 6: An example of intent installation on substrate network

such as autonomous vehicles or pedestrians, the location of the

virtual node can change over time, i.e., n(v) is a mobile node.

The intent-based orchestrator actively monitors and maintains

the intent installation for mobility-related location constraints

due to the virtual node’s location changes.

Problem Description: The installation of a set of intents is

defined by mappings: M{Im} : {Rm(Nm, Lm, Cm
N , Cm

L ) →
G(N,P k

uv, AN , AL)}, from a set of Rm to G, where Nm ⊂ N
is the node mapping and Lm ⊂ P k

uv is the virtual link map-

ping to the network path. An intent installation is successful

when its compute resource requirements and network resource

requirements are all satisfied. Fig. 6 illustrates a possible

mapping for all requests of the three intents in Fig. 5, installed

on the substrate network.

Objectives: The objective of intent installation is to maxi-

mize the intent acceptance ratio owing to their priorities while

efficiently utilizing both computing and networking resources.

Let binary variable Xm,t = {1, 0} denote whether intent Im

is successfully installed at time t or not and Xm,t
i = {1, 0}

denote whether request Rm
i of intent Im can be satisfied or

not. When intent Im is not submitted, Xm,t = 0. Thus, the

success of a general intent installation is defined as:

Xm,t = Xm,t
0 ∧Xm,t

1 ... (1)

Therefore, the long-term intent acceptance ratio is:

lim
T→∞

∑T

t=0

∑

Xm,t

∑T

t=0 |{I
m,t}|

(2)

where |{Im,t}| is the total number of submitted intents at t.

We define three different priority levels for intents: high,

mid and low. With different priority levels, we define two

installation semantics: 1) high and low priority intents are

successfully installed only if all their compiled requests are

satisfied and embedded ∀Xm
i = 1; and 2) a mid priority intent

allows its requests to be installed partially.

To quantify the acceptance ratio of mid-priority intents, we

need to model the long-term request acceptance ratio, which

can be formulated as:

lim
T→∞

∑T

t=0

∑

Xm,t
i

∑T

t=0

∣

∣

{

Xm,t
i

}
∣

∣

(3)

where
∣

∣

{

Xm,t
i

}
∣

∣ is the total number of requests at time t.



To the VEC provider, the cost of intent Im installation is

modeled as the sum of total resource requirements:

κm = α
∑

n∈Nm

cpun + β
∑

n∈Nm

memn + γ
∑

l∈Lm

bwl/delayl

(4)

where α, β, and γ are weights for resources in different

categories valued by the VEC provider. Thus, the revenue

of intent Im installation for VEC provider at time t can be

formulated by:

εm,t =
∑

Xm,t
i · κm,t

i (5)

Similar to [11], the revenue to cost ratio is used to quantify

the long-term resource utilization:

lim
T→∞

∑T

t=0 ε
m,t

∑T

t=0 κ
m,t

(6)

It is known that the general VNE problem is NP hard [10].

Thus, we rely on heuristics to practically solve the problem.

IV. ONLINE INTENT MANAGEMENT

Existing solutions and algorithms [11], [13], [14] of virtual

embedding problem cannot be directly applied to the intent

installation problem in VEC environments. In this section,

we describe our proposed online intent management solution,

which includes a priority-aware intent (PAI) installation al-

gorithm and corresponding location-aware mapping (LAM)

algorithm for intent-based VEC. The intuitions behind our

proposed priority-aware intent-based processing algorithm are:

• Microservices (requests) with location constraints should

be processed first to increase the acceptance ratio.

• Microservices with less complexity and resource de-

mands that have less impact on other intent installations

will be processed first.

• To increase the acceptance ratio of higher-priority intents

and total resource utilization, intent requests with higher

priority will be installed first.

• If there is no request left for the highest installation level,

we process compiled requests of all other intents.

• In the end, if there is no higher priority intent left for

processing, we consider the requests with the lowest

installation priority.

• There is a significant difference in processing and op-

eration costs of intent reinstallation with virtual node

relocation and merely remapping its virtual link [16]. The

mapping may change due to the user mobility after a

virtual node has been allocated in the mobile user node.

Therefore, allocating other nodes that share virtual links

in proper locations can reduce maintenance costs.

A. Priority Aware Intent Installation

With different priorities, the intent contention resolution

algorithm is the key component for IBN-based edge com-

puting management and orchestration. At each time interval

t, priority-aware installation algorithm first checks intents

associated with Suspending event. If virtual link remapping

Algorithm 1: Priority-Aware Intent Installation (PAI)

Input : G edge network graph with previous mapping

information M(t
′

)
Input : time interval t, {Isubmit}, {Isuspend}, {Ifail}

1 foreach I ∈ {Isuspend} do
2 if CheckLink(I) == Failed then
3 RemapPath(I);
4 if status(I) == Failed then
5 Ifail ← I

6 Compile({Isubmit} ∪ {Ifail}):
7 Sort({Ihigh}); ∀ I ∈ {Ihigh}, InstallAll(I);

8 Sort({Rmid}); ∀R ∈ {Rmid}, InstallBest(R);

9 Sort({Ilow}); ∀I ∈ {Ilow}, InstallAll(I);

Algorithm 2: Location-Aware Mapping (LAM)

Input : Requests {R}, Network G, Search depth d
Output : {M(R)} mappings of {R}

1 {R} ← {Rloc}; or {R} ← {Rnon};
2 sortRequests({R});
3 foreach R ∈ {R} do

4 foreach v ∈ {vloc} do
5 M(R)← mapNode(G, v, n(v));
6 if M(R)v == null then
7 status(R) = Failed; goto line 18;

8 sortNode({vnon}); Q.enqueue(getMinNode({vnon});
9 while Q ̸= ∅ do

10 {u} ← Q;
11 foreach u ∈ {u} do
12 M(R)← mapNode(G, u,M(R));
13 if M(R)u == null then

14 M(R)← mapNode(G, u, sortNode(N+
u ));

15 if M(R)u == null then
16 status(R) == Failed; goto line 18;

17 {u} ← Neighbors(R, u,M(R));
Q.enqueue({u});

18 if status(R) == Failed then
19 releaseMap(R);

cannot satisfy the intent, it changes the intent to Failed state

for reinstallation. We set the retry threshold for reinstallation

from Failed intent to 3. To increase the acceptance ratio of

intents with higher priorities and reserve sufficient resources

for subsequent intents, we divide intents into two installation

semantics and policies (Algorithm 1): InstallAll(I): must sat-

isfy all compiled requests of one intent. InstallBest(R): satisfy

as many compiled requests as possible. For each priority

group, the intents Ihigh, I low and compiled requests Rmid

are sorted in ascending order based on the cost model Eq. (4).

B. Location-Aware Mapping

For intents and compiled requests embedding, we propose

the location-aware microservice mapping (LAM) algorithm by

considering location constraints (Algorithm 2). In addition to

considering the computing and networking resource require-

ments of requests within intents, our proposed embedding



algorithm also considers the location constraints, including

fixed and mobility-related location constraints. Traditionally,

location constraints of virtual network requests are fixed, such

as Virtual Network Function (VNF) location constraints of

Service Function Chaining (SFC) [17] and host constraints

due to data security or privacy. For the intents with mobility-

related location constraints, we allocate requests such that it

minimizes the possibility of virtual node reallocation.

Following our installation semantics, the compiled requests

{R} = Im of a high-level or low-level priority intent, and

all compiled requests with mid-level priority {R} =
∑

Im

are processed sequentially. LAM first allocates requests with

fixed and mobility-related location constraints Rloc. Then, it

allocates other requests without any location constraints Rnon.

For each successful node mapping nodeMap, the mapping

result satisfies both node and link requirements. If a virtual

link lu,v exists in R and virtual node v has been mapped

to node n(v), i.e., M(R)v = n(v), the virtual link is mapped

based on k shortest path between the testing node n and n(v).
If any node mapping M(R)v is failed, the request mapping is

also failed without further processing.

From steps 3 to 7, for each Rloc, virtual nodes {vloc}
with fixed and mobility-related location constraints {n(v)} are

mapped firstly. From steps 9 to 17, the remaining virtual nodes

are mapped in a breadth-first search manner. At step 8, virtual

nodes are sorted based on scores calculated in Eq. (7); and

the virtual node with minimum cost is selected (u) as the start

node. The virtual node score in a request R is formulated as:

S(i′)
R
= (α′ · cpu+ β′ · ram) · kbwnn,i′ (7)

where cpu and ram are normalized resource requirements

of virtual node i′. The ratio of α′ and β′ is based on the

computing resource requirement of the selected virtual node

i′, α′/β′ = cpui′/rami′ . kbwnn,i is the average neighbor degree

with bandwidth as the weight. kbwnn,i = 1
si

∑

j∈N(i) bwijkj ,

where si is the weighted degree of node i, N(i) is the set of

node i’s neighbors, kj is the degree of node j which belongs

to N(i). bwij is the bandwidth of the edge (link) that connects

node i and j.

The node mapping procedure continues until the searching

queue Q is empty or a mapping is failed. For each node map-

ping, already selected physical nodes in the request mapping

M(R) are tested first to minimize the link mapping cost at

step 12. If there is no matching, candidate physical nodes

within the search depth are sorted (Eq. (9)) and tested for

mapping at step 14. At step 17, unexplored adjacent virtual

nodes are enqueued based on the virtual node sorting for

further mapping. The candidates nodes N+
u for unmapped

virtual node u are the intersection set of edge nodes within

search depth du,v (the number of switch hops) of the current

mapping node n(v) ∈ M(R),

N+
u =

⋂

v∈M(R)

N+
n(v) (du,v) (8)

where N+
n(v) (du,v) is all nodes within search range of node

n(v) and n(v) is the mapping node of virtual node v that

n(v) : v → n. The search depth is calculated as du,v =
d · ⌈Delayl/µ⌉, lu,v ∈ Lm

i where virtual link lu,v exists, µ
is delay coefficient (µ = 10ms) and d is the search range

coefficient (d = 2). If there is no mapped node, N+
u = G(N)

for the first virtual node mapping. When the request mapping

is successful, the remaining physical resources are updated

accordingly.

At step 14, the candidate physical nodes N+
u are sorted in a

descending order based on the node score model (Eq. 9). The

edge node i’s score in the substrate network is formulated as:

S(i)sub = (α · cpu+ β · ram) · kbwnn,i (9)

where the coefficients of remaining cpu and ram resources

are α and β (α + β = 1). They are computed based on the

remaining computing resources of all nodes within the search

distance as:

α/β =
∑

j∈N
+

i
(d)

cpuj/
∑

j∈N
+

i
(d)

ramj (10)

Compared with traditional VNE solutions, we allow virtual

nodes embedded in the same edge node to increase node uti-

lization and reduce the network cost. In other words, each edge

node can be a cluster of connected physical hosts. Multiple

virtual nodes of the same request can be allocated in the same

edge data center or the same physical host. For the virtual

link mapping, a remote edge node with longer paths results in

reduced bandwidth resource for other intent installations. In

other words, it may reduce the intent installation acceptance

ratio when the network resources are limited. Furthermore,

most mapping algorithms consider the node and link mapping

separately. However, virtual links of microservices at the

edge are distance and latency-sensitive. Selecting all node

locations without considering delays of a path can dramatically

increase the reject ratio of intent installation. Therefore, we

introduce search depth and distance parameters in node sorting

to allocate requests in proximity.

V. PERFORMANCE EVALUATION

In this section, we compare the proposed intent installation

algorithm with baseline algorithms based on the existing

virtual network embedding algorithms, grcrank (Global Re-

source Capacity) [13], rwrank (Markov Random Walk PageR-

ank) [11], and nrmrank (Node Ranking Metric) [14] in terms

of intent acceptance ratio, resource utilization, and execution

time. For a large-scale simulation, we utilize the real-world

taxi GPS dataset in Shanghai (April 1, 2018)1 and the locations

of base stations from Shanghai Telecom.2

A. Experiment Configurations

We extract the taxi GPS data within one hour with the

number of taxis ranging from 1000 to 3000. The location of

each edge node or server is calculated based on the density of

base stations of Shanghai telecom by the K-mean algorithm

1http://soda.shdataic.org.cn/download/31
2http://sguangwang.com/TelecomDataset.html

 http://soda.shdataic.org.cn/download/31
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TABLE I: Physical and intents parameters

Physical Networks Intents Parameters

edge node 200 req num. [1, 4]

edge link 758 vir. node/link [2, 4]/[2, 4]

node CPU [10,40] vir. CPU [1, 2]

node RAM [10,80] vir. RAM [1, 4]

link bw [400,1000] bw/delay [1,2]/[10,100]

(K=200) [18]. Physical links within the VEC network are

generated based on Delaunay Triangulation algorithm [19].

As a result, there are 758 physical links with a 6.6852 km

average distance between edge servers. The average distance

between a user and the nearest edge station is 1.63 km.

The delays of wireless connection between users and base

stations and wired network link are calculated as follows:

t = twireless + twired (11)

twireless = W ∗ log2
Sgt
N

where the channel gain gt is 127 +
30∗ log(d), where d is the distance between the user and local

base station [20]. The channel bandwidth W is set to 20 Mhz,

the noise power N is 2∗10−13 Watt, and the wireless transmit

power of vehicle S is 0.5 Watt. The propagation time of wired

links in milliseconds is calculated as twired = 0.005∗d, where

d in km is the length of the direct optical cables.

An intent is generated and submitted at the same timestamp

when the Taxi ID first appeared in the GPS data. The same

intent is terminated when the Taxi ID is last shown in the

data. Microservices are generated after the intent compiling

(Fig. 4). Fig. 7 depicts the number of intent submissions and

suspended events over time, and the total submissions and

suspended event number of intent requests with various user

numbers. A large number intents submitted by users before

time 25. Table I illustrates the details of the physical network

and intent parameters. Experimental results are reported based

on the average of 10 randomly generated values.

B. Results Analysis

We evaluate the proposed PAI and LAM algorithms

(pailam) described in Sections IV-A and IV-B in various

aspects, namely intent acceptance ratio, resource utilization,

and execution time. Figure 8 illustrates the performance com-

parisons in terms of acceptance ratio, utilization ratio, and

execution time with a various numbers of users. The ratio

of location constraint requests to all requests is 0.1. It shows

that our proposed LAM algorithm can efficiently install delay-

sensitive requests with and without location constraints. LAM

significantly increases the intent acceptance ratio (Fig. 8a) and

utilization (Fig. 8b) by up to 58%-71% and 66%-76%, re-

spectively, compared with other online installation algorithms.

By considering the entire physical network for mapping,

the execution time of baseline VNE algorithms is too high

to suit the large-scale intent installation (Fig. 8d). Due to

the appropriate candidate selections, the processing time of

LAM is decreased by up to 95% compared with other online

algorithms. We further evaluate our proposed intent framework

and pailam algorithm with various parameters, including the

intent priority, search depth for the node mapping candidates,

and the ratio of requests with location constraints (Fig. 9).

Intent priority: Figure 9a shows the reject ratio along the

time, in which high, mid, and low-level intent priorities are

evenly generated. Compared to the mid-priority intents, the

reject ratio of high-priority intents are significantly smaller.

Both mid and high-priority intents can be maintained at a

high acceptance ratio (0.923-0.979 and 0.931-0.979). Intents

with low priority (0.741-0.907) are rejected when one of the

requests is not satisfied for higher-priority intents.

Allocation search depth: With fixed location constraints

ratio of 0.1, we examine the acceptance ratio of pailam

with various search depths for node mapping (Fig. 9b). The

difference in acceptance ratio between depths 2, 4, and 8 is

insignificant among different number of users. With a larger

group of candidates, the depth d=4 has the best performance

in all scenarios. However, the increase in algorithm execution

time is considerably greater than the increase in performance

compared to d=2. When d=8, the acceptance ratio decreases

slightly because the larger group of candidates may lead to

more mapping rejections.

Location constraints: Figure 9c illustrates the acceptance

ratio when the percentage of user location-related requests

varies for 2000 users. pailam uniformly and significantly

outperforms other online algorithms in all scenarios. The

acceptance ratio is the highest in the scenario where 10% of

total intents are location-related (pailam-0.1). The acceptance

ratio of location-related requests may be higher than the non-

location-related requests when the computing and networking

resources of n(v) locations with mapping constraints are

sufficiently large. For example, when the user’s on-board

processing resources and its network connections to edge

servers are sufficiently large (0.5), the acceptance ratio is

higher than 0.2 scenario.

Link remapping and intent reinstallation: Suspended

events are triggered along the time due to user mobility
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(Fig. 7b). Compared to baseline VNE algorithms, the proposed

algorithm does not directly map the suspended requests as if

they are new submissions. As a result, it largely reduces the

execution time and the cost of VM or container migrations for

intent reinstallation [7]. This is because the operating cost of

path rerouting is significantly smaller than live migration [16].

VI. INTENT-BASED COMPUTING PROTOTYPE

In this section, we showcase an Intent-Based Vehicular Edge

Computing prototype based on the SDN controller (ONOS)

and Mininet Emulation platform.3 Virtual node (VM and

container) mapping and virtual link embedding are controlled

by the intent-based framework. We generated a series of events

to validate the feasibility, availability, and flexibility of our

proposed system (Fig. 10). With a 100 priority (low-level),

Intent1 is compiled into one request with v11 , v12 and v13
and links v11-v12 and v11-v13 . Requirement of each node is

2 vCPUs and 4 GB RAM and location constraint of v11 is

user1. Each virtual link requires 20 Mbps of bandwidth and

30 ms of latency. With a 200 priority (mid-level), Intent2 is

compiled into two requests with virtual link v21-v22 and v21-v23 ,

respectively. The requirement of each node is 2 vCPUs and

4 GB RAM and the location constraint of v22 is EDC1. The

link requirement is 20 Mbps and 100 ms.

At time i1 and i2, intent1 and intent2 are submitted and

installed, respectively. At e1, user1 who is connected to EDC1

moves to a new position and gets connected to EDC4. As a

result, a mobility event is raised to check the installation of

intent1 (Fig. 10(a)). At e2, EDC2 goes down. v12 and v13 are

reallocated to satisfy intent1 (Fig. 10(b)). At time e3, the link

3You can find a demo at https://youtu.be/ZXBXdxug x4

between S3 and S4 goes down (Fig. 10(c)). Between e4 and

e5, request v21-v23 of intent2 failed due to EDC1 is down and

v23 location constraint cannot be satisfied (Fig. 10(d)). At e5,

EDC1 is up again and request v21-v23 is reinstalled. As shown in

Fig. 11 and Fig. 12, the prototype application can react to the

computing, networking, and mobility events, satisfy the intents

requirements, and manage the life-cycle of intents efficiently.

VII. RELATED WORK

Virtual network embedding (VNE) [12] refers to the embed-

ding of a virtual network in a substrate network. To provide

custom user-defined end-to-end guaranteed services to end

users, there are different problems that are addressed in this

problem domain, such as optimal resource allocation, self-

configuration and organization of the network. Yu et al. [10]

showed an approach which combines path splitting, path

migration, and customized embedding algorithms to enable a

substrate network to satisfy a larger mix of virtual networks.

Dietrich et al. [21] addressed the problem of multi-provider

VNE with limited information disclosure. EPVNE [22] is a

heuristic algorithm that reduces the cost of embedding the

Virtual Network (VN) request and increase the VN request

acceptance ratio. Hejja and Hesselbach [23] proposed an

online power aware algorithm to solve the VNE problem

using less resources and less power consumption with end-

to-end delay as a constraint. Jinke et al. [24] proposed a VNE

model, where the high priority users can get extra resources

compared to low priority users. Ogino et al. [25] proposed a

VNE method to minimize the total substrate resources required

during substrate resource sharing among multiple priority

classes. Nguyen et al. [26] proposed a node-ranking approach,

and a parallel GA-based algorithm for link mapping stage to

https://youtu.be/ZXBXdxug_x4


Fig. 10: Emulation scenarios. The numbers over the links show the bandwidth and delay, i.e. 400,1.
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Fig. 12: Emulation performance in delay and its rolling average along the time

solve online VNE problem. DeepViNE [27] is a Reinforcement

Learning (RL)-based VNE solution to automate the feature

selection. MUVINE [15] is an RL-based prediction model for

multi-stage VNE among the cloud datacenters.

Recently, there has been some research to improve the net-

work functionalities with the help of SDN intents in different

application scenarios. ONOS Intent Framework [28] indicates

the IBN operations used in ONOS SDN controller. Han et

al. [29] proposed an IBN management platform based on

SDN virtualization to automate the management and con-

figuration of virtual networks. Cerroni et al. [30] proposed

a reference architecture and an intent-based North Bound

Interface (NBI) for end-to-end service orchestration across

multiple technological domains, with a primary use-case be-

ing the infrastructure deployment on the Internet of Things

(IoT). DISMI [31] is also proposed as an intent-based north-

bound interface of a network controller. Addad et al. [32]

benchmarked the ONOS intent NBI using a methodology that

takes into consideration the interface access method, type of

intent and number of installed intents. OSDF [33] is an SDN-

based network programming framework that provides high-

level APIs to be used by managers and network administrators

to express network requirements for applications and policies

for multiple domains. Sanvito et al. [34] extended the ONOS

Intent Framework enabling compiling multiple intents and to

re-optimizing their paths according to the network state based

on flow statistics. Szyrkowiec et al. [35] proposed architecture

for automatic intent-based provisioning of secure services in

multi-layer IP, Ethernet, and optical networks while choosing

the appropriate encryption layer. Rafiq et al. [36] enables IBN

to make effective network resource utilization and minimize

the maximum link capacity utilization.

In summary, existing VNE algorithms do not support allo-

cating multiple virtual nodes to the same compute node, and

VNRs are treated as individual requests. However, our work

supports VEC applications compiled into multiple VNRs. Our

approach also extends intents with location constraints and

incorporates computing requirements, while satisfying users’

QoS requirements. It can also handle the mobility aspect of

the users/applications. Unlike existing VNE algorithms, our

approach is suitable for intent installation with priorities.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a novel intent framework to jointly orches-

trate networking and computing requirements of applications

based on user requirements in vehicular edge computing

environments. Our proposed solution constantly monitors user

requirements and dynamically reconfigures the system to sat-

isfy the desired states of applications. It optimizes resource

utilization and acceptance ratio of computing and networking

requests with various priorities. Results show that our pro-

posed framework outperforms state-of-the-art algorithms in

terms of acceptance ratio, resource utilization, and execution

time. We also provided a small-scale prototype to validate

our proposed framework. In future work, we plan to fully

implement our framework by extending the intent framework

of the ONOS SDN controller and consider inherited periodic

mobility patterns for intent re-installation and management.
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