
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Efficient Alternative Route Planning
in Road Networks

Ahmed Fahmin , Bojie Shen, Muhammad Aamir Cheema , Adel N. Toosi , and Mohammed Eunus Ali

Abstract— Alternative route planning requires finding k alter-
native paths (including the shortest path) between a given source
and target. These paths should be significantly different from
each other and meaningful/natural (e.g., must not contain loops
or unnecessary detours). While there exists many work on
finding high-quality alternative paths, the existing techniques are
computationally expensive and are unable to accommodate the
high volume of queries required by modern navigation systems.
To address this, in this paper, we propose an efficient approach to
compute high-quality alternative paths. Our approach employs
hub-labeling to efficiently identify candidate alternative paths.
The candidate paths are then ranked considering multiple quality
metrics and the top-k alternative paths are returned. We propose
several non-trivial optimizations to significantly improve the
computation time. In our experimental study, we conduct exper-
iments on three diverse real-world road networks and compare
our proposed algorithm against six state-of-the-art algorithms.
The results demonstrate that our algorithm is not only up
to 3 orders of magnitude faster compared to most algorithms but
also consistently generates alternative paths that are comparable
or even superior in terms of quality across various metrics.

Index Terms— Road networks, alternative routes, route plan-
ning, shortest paths.

I. INTRODUCTION

IN ROAD networks, shortest path queries refer to the task
of finding the most cost-effective path (e.g., in terms of

travel time, distance, or fuel consumption) from a given source
location to a target location. The shortest path queries are
among the most fundamental operations on road networks and
are commonly used in route planning services such as Google
Maps and Bing Maps, as well as in various high-level planning
tasks such as location-based services, ride-sharing, traffic
assignments, and more. Due to their various applications, the
shortest path problem has been extensively studied not only on
road networks [1], [2], [3], [4], but also in other settings such
as on social networks [5], indoor venues [6], game maps [7],
to name a few.

Manuscript received 31 July 2023; revised 27 January 2024 and 1 April
2024; accepted 6 April 2024. The work of Muhammad Aamir Cheema was
supported by the Australian Research Council under Grant DP230100081 and
Grant FT180100140. The Associate Editor for this article was B. Y. Chen.
(Corresponding author: Ahmed Fahmin.)

Ahmed Fahmin, Bojie Shen, Muhammad Aamir Cheema, and
Adel N. Toosi are with the Faculty of Information Technology, Monash
University, Melbourne, VIC 3800, Australia (e-mail: ahmed.fahmin@monash.
edu; bojie.shen@monash.edu; aamir.cheema@monash.edu; adel.n.toosi@
monash.edu).

Mohammed Eunus Ali is with the Department of Computer Science
and Engineering, Bangladesh University of Engineering and Technology,
Dhaka 1000, Bangladesh (e-mail: eunus@cse.buet.ac.bd).

Digital Object Identifier 10.1109/TITS.2024.3396173

Fig. 1. Three alternative paths from Brooklyn Museum to New York Hall
of Science (Google Maps).

In many real-world scenarios, it is desirable to provide
users not only with the shortest path but also to offer several
alternative paths for them to choose from. For example,
modern navigation systems often provide users with multiple
alternative routes, allowing them to select a path that best
suits their preferences for traveling. In many cases, the optimal
route to a destination differs from what an individual prefers,
influenced by factors such as their familiarity with the area
or personal biases towards specific roads. To be useful to
the users, the alternative routes suggested by the navigation
system must be short, meaningful (e.g., without unnecessary
detours) and substantially different from each other. It is
worth noting that returning the k shortest paths is not a
suitable solution, as they are often very similar to one another
(i.e., exhibiting high overlap) and may involve needless
detours. Figure 1 shows three alternative paths from Brooklyn
Museum to New York Hall of Science displayed by Google
Maps. The blue path is the shortest path (in terms of travel
time) and the other two paths have comparable travel times.
Note that these paths are short, significantly different from
each other, and are meaningful (e.g., do not contain any small
detours or cycles).

In addition to its importance in navigation services, alter-
native pathfinding has many applications in various other
domains. For instance, in traffic shaping [8], enabling
self-driving vehicles to autonomously select alternative paths
can effectively balance or reduce traffic loads on the road
network. In contingency planning [9], the alternative paths
often serve as backup plans, assisting drivers in avoiding

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3235-2839
https://orcid.org/0000-0003-2139-9121
https://orcid.org/0000-0001-5655-5337
https://orcid.org/0000-0002-0384-7616

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

road accidents or road closures. Additionally, in automated
warehousing [10], the alternative paths are frequently utilized
to prevent collisions when multiple robots are concurrently
executing their tasks. In each application setting, the efficient
computation of high-quality alternative paths is of utmost
importance.

Limitation of Existing Works: Due to their importance,
a considerable amount of research has focused on finding
alternative paths in road networks, e.g., [11], [12], [13], [14],
and [15] and references therein. The existing body of literature
has taken diverse approaches to alternative routing. Some
prominent techniques for computing alternative paths involve
the use of edge penalties [16], [17], [18] or plateaus [19].
However, these approaches often adapt a greedy strategy for
identifying alternative paths, relying heavily on searching
in a frequently updated graph or constructing shortest path
trees, thus lead to high computational costs. Other methods
incrementally search for alternative paths until a collection
of dissimilar paths has been found [20], [21], [22], [23],
or generate an extensive pool of candidate paths and apply
ranking criteria for alternative path selection [19], [24], [25].
These existing techniques suffer from high computation costs,
may taking up to a second to compute alternative paths. The
performance bottleneck inherent in these techniques presents a
significant barrier to their real-world application in large-scale
navigation systems that require computing tens of thousands of
routes per second. To overcome this challenge, there is a need
to design scalable algorithms capable of efficiently computing
alternative routes.

Our Contributions: To overcome the limitations of the
existing works, in this paper, we propose an efficient algorithm
that leverages Hub Labeling (HL) [26], a state-of-the-art
approach for computing shortest paths, to efficiently com-
pute high-quality alternative routes. Our algorithm bypasses
resource-intensive graph searches used by the existing algo-
rithms and instead exploits hub labels to quickly find
high-quality alternative routes, thereby enhancing efficiency.
To further enhance efficiency, we present a set of filtering
rules to eliminate low-quality candidate paths. Additionally,
we introduce several non-trivial optimisations designed to
speed up candidate path construction and calculation of
path quality metrics. We conduct an extensive experimental
study using three diverse road networks (Melbourne, Copen-
hagen and Dhaka) and compare against six state-of-the-art
algorithms. The results show that our algorithm is up to
3 orders of magnitude faster compared to the existing algo-
rithms while the path quality is comparable or sometimes
superior to the existing approaches. For example, compared
to X-CHV [24] which is the fastest existing algorithm,
our algorithm does not only compute alternative paths
4-8 times faster than X-CHV but also consistently returns
better quality paths considering a variety of quality metrics.
Similarly, compared to SVP+ [23], another state-of-the-art
algorithm, our algorithm is around 3 orders of magnitude
faster on average whereas the alternative paths returned by
our approach are slightly better for some quality metrics and
slightly worse for some other. These findings demonstrate
the effectiveness and efficiency of our proposed algorithm,

indicating its potential for practical applications in real-world
scenarios.

Our contributions in this paper are summarized below:
• We introduce a novel algorithm, called Hub-VAR, for effi-

ciently computing k alternative routes in a road network.
What sets Hub-VAR apart from existing algorithms is its
ability to avoid expensive search processes by leverag-
ing hub labels. This approach enables the algorithm to
efficiently retrieve a pool of candidate paths.

• We introduce a set of filtering rules to eliminate
low-quality candidate and employ several optimization
techniques to further enhance the efficiency of the
algorithm.

• We perform an extensive experimental study using three
diverse real-world datasets. The results of our study
demonstrate the promise of our algorithm in terms of both
effectiveness and efficiency.

The paper is organized as follows. We discuss the prob-
lem definition, path quality metrics and hub-labeling in
Section II. Related work is presented in Section III. Our effi-
cient algorithm, called Hub-VAR, is presented in Section IV
followed by experiments and conclusion in Sections V and VI,
respectively.

II. PRELIMINARIES

A. Problem Formulation

Similar to the existing research [17], [23], [24], for ease of
presentation, we assume undirected road networks. However,
our techniques readily extend to directed networks. Let G =

(V, E, w) be an undirected graph, with vertices V , edges
E ⊆ V × V , and w : E → R+ a weight function that
maps each edge e ∈ E to a non-negative weight w(e),
e.g., travel time, distance, etc. A path/alternative path
between a start s and a target t in G is a sequence of
vertices ⟨v0, v1, v2, . . . , vk−1, vk⟩, where v0 = s, vk = t ,
and (vi , vi+1) ∈ E for 0 ≤ i < k. We use |P| to denote
the length of path, where |P| =

∑k−1
i=0 w(vi , vi+1). A sub-

path P(vx , vy) is a contiguous subset of vertices ⟨vx , . . . , vy⟩

of P , where x < y and ⟨vx , . . . , vy⟩ ⊆ P . We use d P (vx , vy)

to denote its length, i.e., d P (vx , vy) =
∑y−1

i=x w(vi , vi+1).
A shortest path sp(s, t) between s and t is a path such
that |sp(s, t)| is minimum among all possible paths between s
and t . We denote its length (i.e., shortest distance) as sd(s, t).
We use sp(s, v, t) to denote the path sp(s, v) ⊕ sp(v, t) where
⊕ is concatenation operation. sd(s, v, t) denotes the length of
sp(s, v, t) (i.e., sd(s, v, t) = sd(s, v) + sd(v, t)).

Definition 1 (Alternative Pathfinding): Given a graph G,
a source s, a target t , and a positive integer k, alternative
pathfinding requires computing up to k alternative paths
(including the shortest path) between a start point s and a
target point t in a road network.

Intuitively, an alternative path can be any path between s and
t ; however, the alternative paths that are short, significantly dif-
ferent from each other and do not contain unnecessary detours
are of users’ interest. As noted in the previous works [11],
there is no agreed definition of what constitutes a set of
“good” alternative routes. This is because the “goodness”

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

FAHMIN et al.: EFFICIENT ALTERNATIVE ROUTE PLANNING IN ROAD NETWORKS 3

of the alternative routes is mostly subjective. Therefore, the
existing works typically do not include the definition of
“goodness” in the problem formulation. Instead, path quality
metrics are defined separately and are used in the experimental
study. Next, we briefly explain the most popular metrics to
evaluate the quality of a set of alternative paths P and, in our
experimental study, we use these metrics.

B. Path Quality Metrics

Existing works have defined a variety of metrics to evaluate
the quality of a set of alternative paths P returned by an
algorithm. We introduce these below.

1) Similarity: Similarity [11] of a set of alternative paths P ,
denoted as Sim(P), measures the pairwise similarity of paths
in P and corresponds to the maximum pairwise similarity.
Formally, the similarity is defined as:

Sim(P) = max
∀(Pi ,Pj)∈P×P :i ̸= j

|Pi ∩ Pj |

|Pi ∪ Pj |
(1)

where |Pi ∩ Pj | (resp. |Pi ∪ Pj |) denotes the total length of
the overlap (resp. union) of two paths Pi and Pj . Note that,
the alternative paths P should be significantly different from
each other, thus lower Sim(P) is better.

2) Distance Ratio: The alternative paths should not be
much longer than the shortest path. The distance ratio of P is
defined by the relative difference w.r.t the shortest distance:

DR(P) =
|P| − sd(s, t)

sd(s, t)
(2)

The alternative path P with lower DR(P) is better, because
in real-world navigation scenarios, the users are unlikely to
choose alternative paths that are substantially longer than the
shortest path. The minimum possible DR(P) is zero which is
when each alternative path has the same length as the shortest
path. Given a set of alternative paths P , distance ratio of
P is the maximum distance ratio among all paths in P , i.e.,
DR(P) = max∀p∈PDR(P).

3) Bounded Stretch: Stretch [18], [27] of a path
reflects detour length compared to the shortest distance.
Given a subpath P(vx , vy) of an alternative path P ,
the stretch of P(vx , vy) is defined as the ratio of the
path distance (i.e., d P (vx , vy)) and the shortest distance
(i.e., sd(vx , vy)) between vx and vy . The bounded stretch
BS(P) of the path P is the maximum stretch of any of its
subpaths:

BS(P) = max
∀P(vx ,vy)∈P

d P (vx , vy)

sd(vx , vy)
(3)

Note that an alternative path with smaller bounded stretch
P is preferred because it indicates that detours compared to
the shortest paths are short. A shortest path sp(s, t) has a
bounded stretch of 1 which is the minimum possible bounded
stretch. Given a set of alternative paths P , the bounded stretch
of P is the maximum bounded stretch of all paths in P , i.e.,
BS(P) = max∀p∈P BS(P).

Fig. 2. Illustrating different quality metrics.

4) Local Optimality: Another popular quality metric for
evaluating alternative paths is local optimality [18], [27],
which is a measure of the optimality of the subpaths of an
alternative path. Given a subpath P(vx , vy) of P , P(vx , vy)

is a suboptimal path if it is longer than the shortest path
between vx and vy , i.e., d P (vx , vy) > sd(vx , vy). Let L(P)

be the shortest suboptimal subpath of P . This implies that
any subpath in P that has length less than L must be an
optimal path [27], i.e., ∀P(vx , vy) ∈ P|d P (vx , vy) < L(P):
d P (vx , vy) = sd(vx , vy). If there is no suboptimal subpath
in P because P is an optimal (i.e., shortest) path, L(P) is
assumed to be infinity. The local optimality LO(P) normalizes
L(P) w.r.t. sd(s, t). Mathematically, this is represented as:

LO(P) =
L(P)

sd(s, t)

=

∞ P is optimal

min
∀(vx ,vy):d P (vx ,vy)>sd(vx ,vy)

d P (vx , vy)

sd(s, t)
else

(4)

Let P be an alternative path with LO(P) = x . This implies
that the shortest suboptimal path of P has length x × sd(s, t),
i.e., every sub-path of P with length less than x×sd(s, t) is an
optimal path. A low value of LO(P) implies that there are short
subpaths in P that are suboptimal. Therefore, higher LO(P)

is better as it indicates the alternative path P does not have
obvious flaws such as loops or small detours (e.g., does not
have short suboptimal paths). For example, a high local opti-
mality, such as 0.8, indicates that every subpath of P shorter
than 80% of the shortest path between s and t is guaranteed
to be an optimal path. Given a set of alternative paths P , the
local optimality of P is the minimum local optimality of all
paths in P , i.e., LO(P) = min∀p∈P LO(P). For more details
of these quality metrics, we refer the interested readers to the
previous works [18], [24], [27].

Example 1: Fig. 2 shows three paths P1, P2 and P3 between
s and t where P1 is the shortest path with length 30.
Similarity of both paths with the shortest path is the same, i.e.,
Sim({P1, P2}) = Sim({P1, P3}) = 10/60 = 0.167. The total
length of both P2 and P3 is 40. Thus, their distance ratio is
the same, i.e., DR(P1) = DR(P2) = (40 − 30)/30 = 1/3. The
bounded stretch for P2 is 1.5 because d P2(s,C)/sd(s,C) =

30/20 = 1.5 (which corresponds to the maximum stretch
of all subpaths in P2). For P3, the bounded stretch is also
1.5 because d P3(A,t)/sd(A,t) = 30/20 = 1.5. For P2, the
shortest suboptimal path on P2 is ⟨s,D,E,C⟩ with length 30.
Thus, LO(P2) = 30/30 = 1. For P3, the shortest suboptimal

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

path on P3 is ⟨A,F,G⟩ with length 15. Thus, LO(P3) =

15/30 = 0.5. Note that P2 and P3 have the same length,
bounded stretch and similarity with the shortest path but P2 is
better than P3 in terms of the local optimality.

When assessing the path quality for alternative paths, it is
important to emphasize that all four quality metrics are sim-
ilarly important and should be evaluated simultaneously. The
overall quality of alternative paths cannot be represented by
any single metric in isolation. In the context of alternative
pathfinding, the objective is typically to identify a set of “high-
quality” alternative paths that exhibit low scores in DR(P),
Sim(P), BS(P), and high scores in LO(P) simultaneously.

C. Hub Labeling (HL)

Computing shortest paths in road networks has been exten-
sively studied and a variety of techniques have been proposed
including Dijkstra’s algorithm [1], bi-directional search [28],
heuristics estimation [2], [29], edge labeling [30], [31], con-
traction hierarchies [4], [32], and hub labeling [5], [26],
to name a few. Since we exploit hub labeling in our solution,
we summarise this approach in this section.

Hub labeling (HL) is the state-of-the-art approach for effi-
ciently computing the shortest path/distance in road networks.
Given an input graph G, HL stores a set of hub labels
H(v j) for each vertex v j ∈ V . Each label is a tuple
(vi , dvi v j , pvi v j) ∈ H(v j) that includes: (i) a hub vertex
vi ∈ V ; (ii) the shortest distance dvi v j between the hub vertex
vi and v j ; and (iii) the predecessor pvi v j of v j (i.e., the first
vertex before v j on the shortest path sp(vi , v j) between vi
and v j). It is crucial for the hub labeling to satisfy coverage
property formally described below.

Lemma 1: (Coverage Property) For every pair of reachable
vertices vi ∈ V and v j ∈ V , the hub labeling must ensure that
there exists a common hub vertex vk in both H(vi) and H(v j),
such that vk is on the shortest path between vi to v j .

Any hub labeling approach that satisfies coverage property
can be used to find the shortest distance/path between vi and
v j by using the hub labels corresponding to the common hub
node vk (as we explain in detail shortly). Reducing the total
number of labels stored while ensuring the coverage property
can improve the query performance. However, computing the
minimum number of hub labels that satisfies the coverage
property is known to be NP-hard [33]. Therefore, many heuris-
tic approaches have been proposed. Although our approach
does not rely on any particular hub labeling technique, in our
implementation, we use SHP [5], a state-of-the-art hub label-
ing approach. The details on how the hub labels are computed
are omitted and readers are referred to the existing works,
e.g., [5]. Next, we show how to efficiently compute the shortest
distance and path using the stored hub labels.

1) Computing Shortest Distance: Based on Lemma 1, the
shortest distance between s and t is calculated by scanning
over the sorted label set H(s) and H(t), and using Eq. (5).1

sd(s, t) = min
vi ∈H(s)∩H(t)

(dsvi + dvi t) (5)

1In this paper, we often use the notation H(s) ∩ H(t) (resp. H(s) ∪ H(t))
to refer to the common (resp. union of) hub vertices stored in H(s) and H(t).

TABLE I
HUB LABELING FOR THE GRAPH IN FIG. 3

Fig. 3. An example of a small road network graph.

Note that the computational complexity of finding the
shortest distance is O(|H(s)|+|H(t)|), where |H(x)| denotes
the number of labels in H(x).

2) Computing Shortest Path: In order to retrieve the shortest
path, the hub labeling algorithm involves a two-step process:
(i) using Eq. (5) to identify the hub labels (vi , dvi s, pvi s)

and (vi , dvi t , pvi t) from H(s) and H(t), respectively, where
vi is the common hub vertex on the shortest path sp(s, t);
and (ii) retrieving the shortest subpath sp(s, vi) and sp(vi , t),
and concatenating them to obtain the shortest path sp(s, t),
i.e., sp(s, t) = sp(s, vi) ⊕ sp(vi , t). The step (i) is the
same as computing shortest distance. To obtain the subpath
sp(s, vi) in step (ii), we follow the predecessor pvi s obtained
from the label (vi , dvi s, pvi s) and recursively extract the next
predecessor from s to vi . Each extraction of a predecessor
requires a linear search over the label set of H(pvi s). The
same process is repeated to obtain sp(vi , t). The complexity
of step (ii) is O(N × S P), where N is the average label size
of a node and S P is the number of vertices on sp(s, t).

Example 2: Consider Table I that shows hub labels for each
vertex of the graph in Fig. 3. To compute the shortest distance
sd(F,H) between F and H, HL iteratively scans the label set
H(F) and H(H) and finds two common hub vertices A and C.
When the common hub vertex A is found with label (A, 5,B)

in H(F) and label (A, 3,E) in H(H), sd(F,H) is updated to
be sd(F,H) = dAF + dAH = 5 + 3 = 8. Later, the algorithm
processes the other common hub vertex C. Since sd(F,H) ≤

dCF + dCH = 3 + 8 = 11, the shortest distance sd(F,H) is not
updated. Finally, the algorithm returns sd(F,H) = 8.

The shortest path is retrieved as follows. Since the common
hub vertex A is on the shortest path, the algorithm computes
sp(F,H) as sp(F,A) ⊕ sp(A,H). To retrieve sp(F,H), the
algorithm backtracks using the predecessor of the hub label
(A, 5,B) in H(F). Specifically, the label indicates that B is the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

FAHMIN et al.: EFFICIENT ALTERNATIVE ROUTE PLANNING IN ROAD NETWORKS 5

first vertex on the shortest path from F to H. Next, the algorithm
accesses the hub labels of B, H(B) and identifies the label
(A, 2,A) containing the hub vertex A. Since the predecessor
in (A, 2,A) is A itself, the path extraction concludes, returning
the shortest path ⟨F,B,A⟩ from F to A. Similarly, the shortest
path ⟨H,E,A⟩ is extracted from H to A. By concatenating these
two shortest paths, the algorithm determines the shortest path
between F and H as ⟨F,B,A,E,H⟩.

III. RELATED WORK

Navigation in road networks has garnered significant
attention, with existing research (see Section II-C) largely
concentrating on computing the shortest paths by representing
edge weights as static values. However, static road networks
merely approximate real-world road conditions. To account for
factors like road congestion, closures, and others, numerous
studies [34], [35] have endeavored to efficiently compute the
shortest path on time-dependent road networks, where the
travel times on the edges vary throughout the day. Addition-
ally, recent research [36], [37], [38] has expanded beyond mere
shortest and time-dependent paths to consider other important
user preferences, aiming to plan utility-rich driving routes such
as the safest and most scenic paths. However, these works are
orthogonal to finding high-quality alternative paths which is
the focus of this work. In this section, we cover some of the
most well-known alternative pathfinding techniques.

A. Penalty

This approach [16], [17], [39] iteratively computes the
shortest paths from the source s to the target t . After each
iteration, it applies a penalty to each edge on the shortest
path found in the previous iteration by increasing its edge
weight by a certain penalty factor. This approach aims to find
multiple paths that are significantly different from each other,
as increasing the edge weight on the shortest path found in the
previous iteration will likely lead to a different shortest path
being chosen in the next iteration. The algorithm stops when
either k unique paths have been found or when the length
of the shortest path found in the current iteration is longer
than d(s, t) × (1 + ϵ) where ϵ is a user-defined parameter.
Although the penalty method heavily relies on increasing
edge weights to avoid similar paths, it offers no guarantee
of identifying alternative paths that are sufficiently dissimilar
from each other. Despite its ease of implementation, as shown
in our experimental study, this method returns, in some cases,
alternative paths that are highly similar to each other.

B. Plateaus

This approach [19] first computes two shortest path trees Ts
and Tt rooted at s and t , respectively. Then, the two trees are
joined and common branches in the two trees are found. Each
common branch is called a plateau. Let pl(u, v) be a plateau
such that u is the endpoint closer to s and v is the endpoint
closer to t . The algorithm selects the k longest plateaus, and
for each of these plateaus pl(u, v), computes an alternative
path as sp(s, u) ⊕ pl(u, v) ⊕ sp(v, t). Note that building the
shortest path trees requires running two Dijkstra searches from

the source s and target t , respectively, which results in high
query processing time. Our proposed algorithm outperforms
this approach by more than two orders of magnitude in terms
of running time.

C. SVP+

Similar to Plateaus, this approach [23] generates two short-
est path trees Ts and Tt . For a vertex v, its via-path through
v is sp(s, v) ⊕ sp(v, t). The algorithm iteratively accesses
vertices in the two trees Ts and Tt in ascending order of the
lengths of their via-paths and adds a via-path to the set of
alternative paths only if its similarity to the already added
alternative paths is less than θ where θ is a user-defined
similarity threshold. Similar to the Plateaus approach, this
approach also suffers from high computation time dominated
by the construction of two shortest paths trees.

D. ESX

The key idea of this approach [23] is to incrementally
remove edges from the road network and compute the shortest
path on the updated network. The order in which the edges
are removed from the road network affects both the result
quality and the performance. The authors apply multiple
strategies (e.g., edge removal, optimisation) to improve its
performance and result quality. ESX is an extension of the
Penalty approach, incorporating a more greedy strategy by
removing edges rather than increasing edge weights. However,
it still suffers from a high computation time and is more than
two orders of magnitude slower than our approach.

E. X-CHV

This idea was first proposed in [24] and is quite similar to
SVP+. The fundamental difference is that X-CHV performs a
bidirectional search on the contraction hierarchy (CH) [32] and
selects the intersecting nodes of CH as via-nodes. By using
these via-nodes, alternative paths are generated by concatenat-
ing the two shortest paths. While X-CHV enhances SVP+ by
adjusting CH to expedite runtime, it still requires extensive
search efforts to discover alternative paths. Consequently, its
computation time is still up to an order of magnitude slower
than our proposed approach which avoids expensive graph
search.

F. DkSP

This approach [15] constructs the shortest path tree from the
source node s and generates candidate paths that deviate from
the shortest path between s and t using edge deviation, ordered
by increasing distance. The primary goal of DkSP is to reduce
the lengths of alternative paths while maintaining a relatively
high level of similarity between them. For instance, in the
experimental study conducted in [15], the allowed similarity
between alternative paths can be as high as 90%. However,
our approach, along with the majority of existing works,
emphasizes ensuring significant dissimilarity between paths,
with, for example, a limit of up to 50% similarity. As the
similarity threshold decreases, DkSP becomes considerably

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 1 Candidate Paths Generation
Input: s: start; t : target; θ : similarity threshold; ϵ: distance

threshold
Output: P: a set of candidate paths

1 Compute shortest distance sd(s, t) and path sp(s, t);
2 P = {sp(s, t)};
3 foreach v ∈ H(s) ∪ H(t) do
4 if v is not on the shortest path sp(s, t) then
5 sd(s, v, t) = sd(s, v) + sd(v, t);
6 if sd(s, v, t) ≤ sd(s, t) × (1 + ϵ) then
7 sp(s, v, t) = sp(s, v) ⊕ sp(v, t);
8 if sp(s, v, t) does not contain cycles then
9 if Sim({sp(s, t), sp(s, v, t)}) ≤ θ then

10 P = P ∪ sp(s, v, t);
11 return P

more resource-intensive, reaching up to three orders of mag-
nitude higher computational costs compared to our approach.
This increased expense is attributed to the need to explore
a significantly larger number of candidate paths within the
shortest path tree.

IV. HUB-BASED VIABLE ALTERNATIVE ROUTING

Our approach, Hub-based Viable Alternative Routing
(Hub-VAR), consists of two phases: (i) generation of candidate
paths (Section IV-A); and (ii) selection of up to k alternative
paths from the generated candidates (Section IV-B). In this
section, we present the basic ideas for each phase and discuss
optimizations to improve the performance.

A. Candidate Paths Generation

Given user-defined similarity threshold θ and distance
threshold ϵ, Algorithm 1 shows how to generate candidate
paths between s and t . First, it utilizes hub-labeling (HL) to
compute the shortest distance sd(s, t) and extract the shortest
path sp(s, t) between s and t (line 1). Then, the algorithm
initializes P , a set containing the candidate alternative paths
found so far, by inserting the shortest path sp(s, t) in it (line 2).
To generate the candidate alternative paths, the algorithm
iteratively examines the unique hub vertices in H(s) and H(t)
(i.e., v ∈ H(s) ∪ H(t)) (line 3). The algorithm prunes a hub
vertex v if it lies on the shortest path sp(s, t) (line 4) because
the shortest via-path through v, sp(s, v, t), is the same as the
shortest path sp(s, t). If v does not lie on the shortest path, our
algorithm considers the via-path sp(s, v, t) where sp(s, v, t)
is concatenation of the shortest paths from s to v and from v

to t (i.e., sp(s, v, t) = sp(s, v) ⊕ sp(v, t)). Although each
sp(s, v, t) can be used as a candidate alternative path and
stored in P , our algorithm ignores poor quality paths by
filtering sp(s, v, t) if:

1) it is much longer than the shortest path, specifically if
sd(s, v, t) > sd(s, t) × (1 + ϵ) (line 5 - 6); or

2) it contains cycles (line 7 - 8); or
3) its similarity to the shortest path sp(s, t) is greater than

the similarity threshold θ (line 9).
The pruning steps 1 and 3 ensure that the candidate

paths satisfy similarity and distance thresholds. Pruning

Fig. 4. The source (resp. target) node is F (resp. H). Hub-VAR generates
two candidate paths colored in orange and magenta.

step 2 ignores any path that contains cycles because such paths
are not realistic and have infinite bounded stretch (see Eq. (3)).
Each via-path sp(s, v, t) which is not pruned by the above
pruning rules is appended to the candidate set P (line 10).
When each hub vertex v is processed as described above, the
algorithm terminates by returning the candidate set P (line 11).

Example 3: Consider the example in Fig. 4, where we
assume the source is F, the target is H, ϵ = 0.5 and θ =

0.5. The algorithm begins by computing the shortest path
sp(F,H)=⟨F,B,A,E,H⟩ (shown in orange dotted line) and
sd(F,H) = 8 using HL. The shortest path is then appended
to P as a candidate path. Next, the algorithm employs HL
to determine the union of hub vertices {A,B,C,D,E,F,H}

stored in F and H, as shown in Table I. The algorithm
then iteratively accesses each hub vertex, skipping the hub
vertices A, B, E, F and H since they already appear on
the shortest path. The remaining hub vertices C and D are
processed. When hub vertex C is processed, the via-path
sp(F,C,H)=⟨F,C,D,E,H⟩ (shown in magenta dashed line)
is appended to P because it is not pruned by any of the
pruning rules. Specifically, its length 11 is smaller than
sd(F,H) × (1 + ϵ) = 8 × 1.5 = 12, it does not contain
a cycle and its similarity to the shortest path is less than
0.5. The algorithm then processes the hub vertex D but it is
pruned because the via-path sp(F,D,H)=⟨F,B,A,E,D,E,H⟩

contains a cycle (e.g., ⟨E,D,E⟩). The algorithm terminates and
returns the two candidate paths shown in orange and magenta.

Next, we describe how to implement the pruning steps.
1) Implementing Pruning Step 1: For a given v ∈ H(s) ∪

H(t), this pruning step requires calculating sd(s, v, t) which
requires computing sd(s, v) and sd(v, t). We efficiently com-
pute sd(s, v, t) using HL as follows. Since v ∈ H(s) ∪ H(t),
it must have a hub label in at least one of H(s) or H(t).
We have two cases:

Case 1: v is a hub label in both H(s) and H(t). In this
case, sd(s, v) and sd(v, t) can be easily retrieved using the
hub labels of v in H(s) and H(t), respectively.

Case 2. v is a hub label in only one of H(s) or H(t).
Without loss of generality, assume that v is a hub label in
H(s) but not in H(t). In this case, sd(s, v) is obtained using
the hub label of v in H(s) and sd(v, t) is computing using
HL as explained in Section II-C.

Optimisations: For the case 2 above, the algorithm requires
computing either sd(s, v) or sd(v, t) using HL. Without loss
of generality, assume that sd(v, t) is required to be computed
using HL (whereas sd(s, v) is retrieved from the hub label

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

FAHMIN et al.: EFFICIENT ALTERNATIVE ROUTE PLANNING IN ROAD NETWORKS 7

of v in H(s)). To further optimise computational efficiency,
we delay the distance calculation sd(v, t) as follows. We first
check if sd(s, v) > sd(s, t) × (1 + ϵ). If so, sd(v, t) is not
required and the path is pruned. Otherwise, we compute a
lower bound distance between v and t (denoted as ld(v, t)).
If sd(s, v) + ld(v, t) > sd(s, t) × (1 + ϵ), the path is pruned
and sd(v, t) is not needed to be computed. Although any
lower bound distance can be computed, in our implementation,
we use landmark based lower bound distance [29].

2) Implementing Pruning Step 2: A simple approach to
implement pruning step 2 is to traverse the via-path sp(s, v, t)
and see if it contains cycles (i.e., a vertex appears more
than once on the path). However, this requires computing and
traversing the whole path which may be un-necessary.

Optimisation: Recall that sp(s, v, t) = sp(s, v) ⊕ sp(v, t).
The following lemma helps in efficiently identifying if
sp(s, v, t) contains a cycle or not.

Lemma 2: Let vs be the first vertex on the shortest path
from v to s. Let vt be the first vertex on the shortest path from
v to t . The path sp(s, v, t) contains a cycle if and only if vs
and vt refer to the same vertex.

Proof: If vs and vt are the same vertex, then it is
easy to see that sp(s, v, t) contains a cycle ⟨vs, v, vt ⟩. Next,
we prove that sp(s, v, t) contains a cycle only if vs and vt
refer to the same vertex. Assume that sp(s, v, t) contains a
cycle but vs and vt do not refer to the same vertex. Since
there is a cycle, there must be at least one vertex r repeated
twice. Since sp(s, v) and sp(v, t) are shortest paths, they
cannot contain cycles. Thus, if there is a cycle in sp(s, v, t),
it must overlap both sp(s, v) and sp(v, t), i.e., the cycle is
⟨r, · · · , v, · · · r⟩. Since ⟨r, · · · , v⟩ is on sp(s, v) and ⟨v, · · · , r⟩

is on sp(v, t), the cycle is sp(r, v)⊕sp(v, r). Since the graph is
undirected,2 all vertices on sp(r, v) and sp(v, r) are repeated.3

Thus, vs and vt must be the same vertex which contradicts our
assumption.

Based on Lemma 2, instead of retrieving the whole via-
path, we simply check whether vs and vt refer to the same
vertex or not. Note that vs and vt can be easily retrieved
using HL by looking at the predecessor vertex stored in the
hub labels (as explained in Section II-C). Also, vs or vt may
have already been computed during pruning step 1. In short,
this optimisation does not require computing the via-path
sp(s, v, t) at line 7. Instead, the pruning step 2 is applied by
computing only vs and vt .

3) Implementing Pruning Step 3: Applying pruning
step 3 requires computing similarity between sp(s, v, t) and
sp(s, t) (line 9). This can be done by computing sp(s, v, t) =

sp(s, v) ⊕ sp(v, t) and computing its similarity with sp(s, t)
using Eq. (1). Next, we present an optimisation that may not
require computing the whole path sp(s, v, t) if it can be pruned
by the pruning step 3.

Optimisation: First we present the following lemma which
is crucial to the optimisation.

2For ease of presentation, in this paper, we assume an undirected graph.
But the proof can be extended for the directed graphs as well.

3Even if there are more than one shortest paths between r and v, hub
labeling construction using a shortest path tree rooted at v ensures that a
unique shortest path is selected.

Lemma 3: Let Pi and Pj be two paths. Similarity between
them Sim({Pi, Pj}) is greater than θ if and only if |Pi ∩ Pj | >

θ
1+θ

(|Pi | + |Pj |) where |X | denotes the length of a path X.
Proof: We show that Sim({Pi, Pj}) > θ is equivalent to

|Pi ∩ Pj | > θ
1+θ

(|Pi | + |Pj |). Since Sim({Pi, Pj}) =
|Pi ∩Pj |

|Pi ∪Pj |

(see Eq. (1)), we have.

Sim({Pi, Pj}) > θ

|Pi ∩ Pj |

|Pi ∪ Pj |
> θ

Since |Pi ∪ Pj | is equal to |Pi | + |Pj | − |Pi ∩ Pj |, we get

|Pi ∩ Pj |

|Pi | + |Pj | − |Pi ∩ Pj |
> θ

|Pi ∩ Pj | > θ(|Pi | + |Pj | − |Pi ∩ Pj |)

(1 + θ)(|Pi ∩ Pj |) > θ(|Pi | + |Pj |)

|Pi ∩ Pj | >
θ

1 + θ
(|Pi | + |Pj |)

We exploit Lemma 3 as follows. Instead of computing the
whole path sp(s, v, t), we incrementally retrieve edges on
sp(s, v, t) and calculate |sp(s, v, t) ∩ sp(s, t)|. When sp(s, t)
is computed at line 1 of Algorithm 1, we mark every edge
that lies on sp(s, t). This allows checking whether an edge on
sp(s, v, t) overlaps with sp(s, t) in O(1). We incrementally
update |sp(s, v, t) ∩ sp(s, t)| as new edges on sp(s, v, t)
are retrieved and, at any stage, if it becomes bigger than

θ
1+θ

(sd(s, v, t)+sd(s, t)), we prune the path, where sd(s, v, t)
and sd(s, t) are already computed by the algorithm earlier.
This allows pruning the via-path sp(s, v, t) without retrieving
the whole path.

Remark: Algorithm 1 might return fewer than k candidate
paths if, for instance, the union of H(s) and H(t) has fewer
than k vertices. Our experimental investigation indicates that
H(s)∪H(t) typically encompasses numerous vertices, making
it unlikely to have fewer than k vertices. However, there
are cases where this could occur. In such instances, akin to
numerous existing methodologies, the algorithm will yield
fewer than k alternative paths. As an alternative approach, the
algorithm can generate additional candidate paths by progres-
sively considering nodes in H(v) for each v ∈ H(s) ∪ H(t)
until a sufficient number of candidate paths are obtained.

B. Alternative Paths Selection

After Algorithm 1 generates the candidate paths P , we pass
P to another algorithm which selects up to k alternative paths
from P and returns to the user. The aim here is to return a
result set R ⊆ P containing up to k paths such that R is of the
highest quality according to the metrics defined in Section II.
One straightforward approach is to select paths based on a
single metric, disregarding others. While this method may
expedite the selection process, it often leads to poor path
quality. Another strategy is to identify a set of candidate paths
that are not dominated by other paths considering all four
metrics. However, computing the pareto frontier can yield

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 2 Get Alternative Paths
Input: P: set of candidate paths; k: # of required paths
Output: Result set R containing up to k alternative paths

1 R = {sp(s, t)};P = P \ sp(s, t)
2 foreach P ∈ P do
3 P.score = LO(P) − BS(P) − DR(P)
4 while P is not empty and R contains less than k paths do
5 foreach P ∈ P do
6 P.quali t y = P.score − Sim(P ∪R)
7 X = the path in P with the highest P.quali t y
8 R = R ∪ X ;P = P \ X
9 return R;

a large number of paths which may overwhelm the users.
To overcome these issues, we introduce a combined objective
function that integrates the four path quality metrics in order
to select up to k alternative paths from P . The main intuition
is to acknowledge that all path quality metrics are important,
thereby avoiding the selection of alternative paths that favor
only a specific metric.

Specifically, DR(R), BS(R), Sim(R) should be as small
as possible and LO(R) should be as large as possible. One
possible approach is to consider all possible path combinations
in P containing k paths such that LO(R)−BS(R)−DR(R)−

Sim(R) is as large as possible. However, this approach requires
evaluating

(N
k

)
path sets which is computationally expensive

because
(N

k

)
may be a large number and computing the quality

metrics for each path set is computationally expensive. Next,
we present a greedy algorithm which returns R aiming to
maximise the objective function LO(R) − BS(R) − DR(R) −

Sim(R). Note that this objective function gives equal weight to
each quality metric and, depending on the application or user
requirements, a weighted aggregate of these values can also
be used. Also, we normalise all these values using Min-Max
normalization.

Algorithm 2 shows the details of the greedy algorithm for
alternative path selection. Initially, it inserts the shortest path
sp(s, t) in R and removes it from the candidate paths P
(line 1). For the remaining paths in P , we compute quality
score of each path P , denoted as P.quali t y, and incrementally
insert the path P with the highest P.quali t y in R. The quality
score of each path P is LO(P)−BS(P)−DR(P)−Sim(P ∪R).
Note that LO(P), BS(P) and DR(P) of a path P remain
unchanged in each iteration whereas Sim(P ∪R) needs to be
recomputed as more paths are inserted inR. Therefore, we first
compute LO(P) − BS(P) − DR(P) for each path, denoted as
P.score (see lines 2-3). Then, in each iteration, we compute
Sim(P ∪R) and subtract this value from P.score to obtain
its quality score P.quali t y (lines 5-6). Then, the path with
the highest quality score is inserted in R and removed from
the candidate paths P (lines 7-8). When P becomes empty
or R contains at least k paths, the algorithm terminates by
returning R (lines 4 and 9).

The algorithm requires computing DR(P), BS(P), LO(P)

and Sim(P ∪R). Computing DR(P) is computationally cheap
as it needs |P| and sd(s, t) which are already known to the
algorithm at this stage. Next, we present two optimizations to
improve the computational cost for the other quality metrics.

1) Efficiently Computing BS(P) and LO(P): Recall that
bounded stretch BS(P) of P is the maximum stretch of any
of its subpaths P(vx , vy) ∈ P where stretch of a subpath
P(vx , vy) is d P (vx , vy)/sd(vx , vy) (see Eq. (3)). Thus, one
simple approach to compute BS(P) is to compute stretch of
each subpath P(vx , vy) and maintain the maximum stretch.
Also, recall that LO(P) is computed by dividing the length of
the shortest suboptimal path L(P) by sd(s, t) (see Eq. (4)).
L(P) can be computed by considering all subpaths P(vx , vy)

and maintaining the smallest length for paths that are not
optimal (i.e., d P (vx , vy) > sd(vx , vy)). Let n be the number
of vertices on the path P , the above approaches to compute
BS(P) and LO(P) require considering O(n2) subpaths. The
following lemma helps us significantly reduce the number of
subpaths considered for computing BS(P) and LO(P)

Lemma 4: Consider a path P and its subpath P ′
⊆ P.

If P ′ is an optimal path, each subpath P(vx , vy) where both
vx and vy lie on P ′ can be safely ignored to correctly compute
BS(P) and LO(P).

Proof: We show that the stretch of each such P(vx , vy)

is 1 and thus is not required to be specifically computed. Since
P ′ is an optimal path, for every (vx , vy) on P ′, P(vx , vy) is
also an optimal path, i.e., d P (vx , vy) = sd(vx , vy). Therefore,
its stretch d P (vx , vy)/sd(vx , vy) = 1. Computing LO(P)

requires computing the length of the shortest suboptimal
subpath. Since P ′ is an optimal path, P(vx , vy) is also an
optimal path and thus is not required to be considered.

Now, we present Algorithm 3 which efficiently computes
BS(P) and LO(P) for a via-path sp(s, v, t) by exploiting
Lemma 4. The algorithm initializes the bounded stretch (BS)
to be 1 which is the minimum possible bounded stretch, and
the length of the shortest suboptimal path L to ∞. Since
sp(s, v, t) = sp(s, v) ⊕ sp(v, t), we do not need to consider
any pair of vertices (vx , vy) where both vx and vy lie either
on sp(s, v) or on sp(v, t) (see Lemma 4). Therefore, the
algorithm only considers the vertices (vx , vy) where vx lies
on sp(s, v) and vy lies on sp(v, t). Specifically, the algorithm
employs two nested loops where the outer loop incrementally
considers each vx on the shortest path from s to v (line 1)
and the inner loop incrementally processes each vy on the
shortest path from t to v (line 2). In each iteration of the inner
loop, the algorithm calculates the shortest distance sd(vx , vy)

using HL. Note that d P (vx , vy) can be obtained in O(1) if
the path distance d P (s, v′) from s to each vertex v′ on the
path sp(s, v, t) is recorded at the beginning of the algorithm
by traversing the path sp(s, v, t). Specifically, d P (vx , vy) =

d P (s, vy) − d P (s, vx).
If the subpath P(vx , vy) is not a shortest path (i.e.,

d P (vx , vy) ̸= sd(vx , vy)), the algorithm computes stretch of
P(vx , vy) and updates BS if this stretch is higher than the
current BS (line 4). Also, L is also updated if the length of this
path d P (vx , vy) is smaller than the current L (line 5). If the
subpath P(vx , vy) is a shortest path, the algorithm exploits
Lemma 4 and breaks the inner loop (line 6). When both nested
loops are concluded, the algorithm returns the bounded stretch
BS and local optimality which is L/sd(s, t) (line 7).

While Algorithm 3 correctly computes BS(P) and LO(P),
the algorithm to return top-k alternative paths (Algorithm 2)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

FAHMIN et al.: EFFICIENT ALTERNATIVE ROUTE PLANNING IN ROAD NETWORKS 9

TABLE II
NUMBER OF VERTICES (#V) AND EDGES (#E) IN EACH MAP. WE ALSO SHOW PREPROCESSING COST FOR CONSTRUCTING THE
HUB LABELING, INCLUDINGBUILD TIME IN MINUTES, MEMORY COST IN MEGABYTES, AND AVERAGE/MAXIMUM LABEL SIZE

Algorithm 3 Optimized calculation of BS and LO
Input: P: a via-path sp(s, v, t)
Output: path quality metrics: BS(P) and LO(P)
Initialisation: BS = 1; L = ∞

1 foreach vx on the shortest path from stov do
2 foreach vy on the shortest path from t tov do
3 if d P (vx , vy) ̸= sd(vx , vy) then

4 BS = max(BS,
d P (vx ,vy)
sd(vx ,vy)

);

5 L = min(L, d P (vx , vy)));
6 else break;
7 return BS and L/sd(s, t);

does not necessarily need exact BS(P) and LO(P), i.e., approx-
imate values of BS(P) and LO(P) may be sufficient to return
high quality paths. Therefore, it is not necessary to traverse
every vertex vx and vy in the two nested loops of Algorithm 3.
Instead, we can skip x nodes in each iteration of inner and
outer loops. We tried different values of x and observed
that, for x = 10, Algorithm 3 still returned very good
approximates of BS(P) and LO(P) while significantly reducing
the computation time.

2) Memoization: Algorithm 2 requires computing BS(P)

and LO(P) for all candidate paths P ∈ P and, we observed
that, there were repetitive calculations of the shortest distance
sd(vx , vy) for numerous duplicate pairs (vx , vy) across dif-
ferent candidate paths. To further improve the computational
efficiency, we implemented a hash table to store the values of
sd(vx , vy) for each vertex pair (vx , vy). This approach avoids
redundant computations of the shortest distances using HL
when the same vertex pair has already been cached. Addition-
ally, Algorithm 2 requires computing similarity Sim(P ∪R)

for each candidate path P ∈ P whenever a new alternative
path is appended to the result set R. The similarity metric
Sim(P ∪R), as defined in Eq. (1), represents the maximum
similarity between any pair of paths (Pi , Pj) in P ∪ R.
To avoid redundant computations of the similarity between
pairs (Pi , Pj), we also employ caching to store the computed
similarity values for each pair of paths (Pi , Pj). Similarly,
we also integrate these caching strategies into Algorithm 3.
When implementing caching, it is important to note that
the hash table created for each individual query can be
deleted once the query results have been computed. Con-
sequently, the size of the hash table does not accumulate,
leading to negligible memory overhead as verified in the
experiments.

V. EXPERIMENTS

A. Settings

We run experiments on an Apple M1 Pro machine with
10-core CPU with 32 GB of RAM. All algorithms have
been implemented in C++ and compiled with the -O3 flag.
To ensure a fair comparison, the algorithms use the same
implementation of common routines. We obtained real-world
road networks from OpenStreetMap4 for three demographi-
cally diverse cities: Melbourne, Dhaka, and Copenhagen (see
Table II). For each road network, we show results for two sets
of experiments: one where the edge weights correspond to the
travel times; and the other where edge weights correspond to
the travel distances. As noted in the previous works [27], if an
approach returns less than k alternative paths, it may unfairly
receive better quantitative scores for certain quality metrics.
Therefore, we generated 10,000 queries for each map with
source and target for each query uniformly distributed over
the map, ensuring that all approaches returned k alternative
paths.

B. Algorithms Evaluated

Our approach, Hub-based Viable Alternative Routing,
is shown as Hub-VAR in the experiments. To implement
the hub labeling, we employ the state-of-the-art algorithm,
Significant path-based Hub Pushing (SHP) [5], using the
implementation taken from the public repository.5 For repro-
ducibility, implementation of Hub-VAR will be made available
online.6

We compare our approach with the six well-known and
state-of-the-art algorithms discussed in Section III. To ensure
a fair comparison, we strive to utilize the original source
code released by the creators of each algorithm, whenever
accessible. Therefore, for SVP+ and ESX [23], we uti-
lize the original authors’ implementations from the publicly
available repository.7 Similarly, we use the publicly available
implementation of DkSP [15] from the online repository.8

However, for Penalty and Plateaus, the algorithm inventors
have not released their implementations. Therefore, we opted
for the implementations provided by the authors of a recent

4www.openstreetmap.org
5http://degroup.cis.umac.mo/sspexp
6https://github.com/AhmedFahmin05/Hub-VAR
7https://github.com/tchond/kspwlo
8https://github.com/AngelZihan/Diversified-Top-k-Route-Planning-in-

Road-Network

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Runtime comparisons on the three road networks. The x-axis shows the percentile ranks of queries sorted based on the shortest distances between
start and target.

comparative study [11]. Notably, the X-CHV implementation
was not available, prompting us to develop it ourselves.
Note that implementing X-CHV involves creating contraction
hierarchies (CH), for which we utilized the CH implementation
from RoutingKit,9 implemented by the same research group
that proposed X-CHV. We make our best efforts to implement
the algorithm following the details provided by the authors in
the original work. Similar to most of the existing studies [11],
[22], [23], [25], all algorithms are configured to compute
k = 3 alternative paths. The similarity threshold θ and the
distance threshold ϵ are both set to 0.5, unless specified
otherwise.

C. Results

1) Preprocessing: In Table II, we present the build time
and memory costs associated with hub labels. In all cases, the
build time is under two minutes and the memory required to
store hub labels is under 2GB, which is reasonable for modern
systems that have much larger main memories. Similar to
existing works, these labels are generated offline and persist in
memory throughout query processing. Additionally, we offer
insights into the maximum and average label sizes for the
vertices in each network. On average, the vertices have a
sufficient number of hub labels for Algorithm 1 to identify
candidate paths. According to the Table II, the hub labeling
technique performs better for the travel time network. The
label size in the distance network is higher, thereby incurring
higher query runtime, as demonstrated in later sections.

2) Query Runtimes: Figure 5 illustrates the runtime for
different algorithms on the three road networks using either
the travel time or the distance. Similar to existing studies for
shortest path queries on road networks [4], we sort the queries

9https://github.com/RoutingKit/RoutingKit

based on the shortest distances between their respective start
and target locations. The x-axis of each figure represents the
percentile ranks of the queries in this sorted order (e.g., a query
with a larger percentile has a longer distance between its start
and target). Note that the y-axis is in log scale. As expected,
the cost of each algorithm increases as the distances between
query start and target location increases. Our approach, Hub-
VAR, consistently outperforms all competitors for all road
networks and for both travel time and distance. Specifically,
Hub-VAR is 4-8 times faster than X-CHV and is 2-3 orders
of magnitude faster than all other approaches. Notably, Hub-
VAR exhibits faster performance on travel time maps as
opposed to distance maps. This distinction can be attributed to
the underlying hub labeling technique, SHP, which has been
proven to operate more efficiently on travel time maps in
previous studies on the shortest path queries [4].

3) Path Quality: Table III compares the quality of the
alternative paths for Hub-VAR against the competitors. Our
evaluation is based on the alternative paths metric defined in
Section II: (i) Bound Stretch BS(P); (ii) Similarity Sim(P);
(iii) Local Optimality LO(P); and (iv) Distance Ratio DR(P).
For each metric, we present both the average value as well
as the worst reported value across all queries. We remark
that although our algorithm, Hub-VAR, computes approximate
values of LO(P) and BS(P) to optimise the query performance
(see Section IV-B), the quality metrics reported in Table III
correspond to the exact values for all metrics.

The results show that no single approach dominates all
other algorithms across all metrics. The Plateau method selects
alternative paths with longer plateaus which are locally opti-
mal. Consequently, it performs better in terms of LO(P) but
exhibits lower quality in DR(P) due to longer paths. The
Penalty approach adjusts the penalty factor for each newly
selected alternative path, making it more likely to choose

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

FAHMIN et al.: EFFICIENT ALTERNATIVE ROUTE PLANNING IN ROAD NETWORKS 11

TABLE III
PATH QUALITY AND COMPUTATIONAL EFFICIENCY COMPARISON. ARROWS INDICATE WHETHER SMALLER OR LARGER VALUES ARE BETTER.

WE SHOW BS(P) (SMALLER THE BETTER), Sim(P) (SMALLER THE BETTER), L O(P) (LARGER THE BETTER), DR(P) (SMALLER THE BETTER),
AND AVERAGE RUNTIME (SMALLER THE BETTER). BEST VALUES FOR EACH COLUMN ARE SHOWN IN BOLD

dissimilar paths and thus performing better in terms of Sim(P).
However, this comes at the cost of other metrics as the
Penalty method lacks guarantees in those areas. While most
of the algorithms are pretty similar in terms of path quality
metrics, DkSP is an outlier. This is mainly because, as noted in
Section III, DkSP aims to minimize the lengths of alternative
paths and allows very high similarity between the alternative
paths. As a consequence, it achieves better performance in
terms of DR(P) and BS(P) whereas it performs very poorly
on Sim(P) and LO(P). Specifically, the paths reported by
DkSP are around 75% similar to each other on average (the
maximum similarity is 98%) and the local optimality is also
very small. This is undesirable in most real world applications
where the users are interested in retrieving paths that are
significantly different from each other, and do not have small
detours (i.e., do not have very low local optimality).

Hub-VAR considers a combination of quality metrics during
alternative path computation. By doing so, it ensures that it
does not perform poorly in any particular criterion, making
it consistently competitive across all metrics. At the same
time, its runtime is 2-3 orders of magnitude lower than
most of the approaches making it suitable for deployment
in real-world navigation systems that are expected to handle
tens of thousands of queries per second. X-CHV is the

closest to Hub-VAR in terms of runtime but is still 4-8 times
slower. Furthermore, Hub-VAR consistently performs better
or comparable to X-CHV in terms of almost all path quality
metrics.

4) Other Experiments: Fig. 6 shows the impact of varying
different important parameters on runtime of different algo-
rithms. In each experiment, only one parameter is varied while
the others are set to their default values. As expected, the
runtime of most of the algorithms increase as the values of k
and ϵ increase because the search space increases. However,
Hub-VAR consistently outperforms all existing algorithms.
As θ increases the cost of Hub-VAR and X-CHV increases
because there are more candidate paths that need to be
processed. The cost of DkSP significantly decreases as θ is
increased because it needs to explore fewer candidate paths
from the shortest path tree (see Section III). For very high
values of θ (e.g., >0.8), DkSP outperforms all algorithms in
terms of running time. However, note that DkSP is orthogonal
to our algorithm and the other competitors as it is designed
to minimise lengths of alternative paths while allowing
very high similarity and very low local optimality. In real-
world navigation scenarios where diverse alternative paths are
recommended, DkSP is not suitable due to the high similarity
among the returned alternative paths, reaching up to 0.98 in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 6. Runtime comparisons on the Melbourne (travel time) road network for different values of k, θ , and ϵ.

Table III. DkSP performs very poorly in terms of Sim(P) and
LO(P) metrics, e.g., for Melbourne Distance graph (Table III),
its average Sim(P) and LO(P) are 0.75 and 0.01, respectively,
compared to 0.27 and 0.3, respectively, for Hub-VAR. Thus,
DkSP should only be used in applications where length of the
paths is the key focus regardless of their similarity and local
optimality.

The results for path quality metrics for varying these param-
eters are not shown due to the space limitations. However,
the results follow the same trend as shown in Table III, e.g.,
most algorithms are comparable to each other except DkSP
which has significantly better BS(P) and DR(P) but very poor
Sim(P) and LO(P). We also assess the memory consumption
of the Memoization technique. As mentioned earlier, the size
of the hash table incurs negligible memory overhead consider-
ing large main memory available in the modern systems. In the
Melbourne Travel Time network experiment, the average size
of the hash table is 0.7988 MB (max: 2.8229 MB), and the
use of the hash tables results in an average performance gain
of 2.81 times (max: 5.23 times).

VI. CONCLUSION

Our study is the first to exploit hub labeling for alternative
routing in road networks. We propose an efficient approach
that generates candidate paths using hub labeling and returns
high-quality candidate paths by ranking these candidate paths
considering a combination of path quality metrics. We present
several non-trivial optimisation to improve the efficiency. Our
experimental results demonstrate that our proposed approach
is up to three orders of magnitude faster than the existing
alternative routing approaches and 4-8 times faster than the
existing most efficient algorithm. Furthermore, the results
show that none of the existing techniques outperforms all other
approaches across all performance criteria, while our algorithm
is capable of generating high-quality paths of comparable
quality at a much lower computational cost and, therefore,
is suitable for deployment in large-scale navigation systems.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SCS-4, no. 2, pp. 100–107, Jul. 1968.

[3] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for A∗:
Efficient point-to-point shortest path algorithms,” in Proc. 8th Workshop
Algorithm Eng. Experiments (ALENEX), Jan. 2006, pp. 129–143.

[4] B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Contract-
ing and compressing shortest path databases,” in Proc. ICAPS, 2021,
pp. 322–330.

[5] Y. Li, U. H. Leong, M. L. Yiu, and N. M. Kou, “An experimental
study on hub labeling based shortest path algorithms,” Proc. VLDB
Endowment, vol. 11, no. 4, pp. 445–457, Dec. 2017.

[6] M. A. Cheema, “Indoor location-based services: Challenges and oppor-
tunities,” SIGSPATIAL Special, vol. 10, no. 2, p. 10, Nov. 2018.

[7] J. Du, B. Shen, and M. A. Cheema, “Ultrafast Euclidean shortest path
computation using hub labeling,” in Proc. AAAI Conf. Artif. Intell.,
Jun. 2023, vol. 37, no. 10, pp. 12417–12426.

[8] F. Barth and S. Funke, “Alternative routes for next generation traffic
shaping,” in Proc. 12th ACM SIGSPATIAL Int. Workshop Comput.
Transp. Sci., Nov. 2019, p. 6.

[9] A. Botea, E. Nikolova, and M. Berlingerio, “Multi-modal journey plan-
ning in the presence of uncertainty,” in Proc. ICAPS, 2013, pp. 20–28.

[10] F. Islam, C. Paxton, C. Eppner, B. Peele, M. Likhachev, and D. Fox,
“Alternative paths planner (APP) for provably fixed-time manipulation
planning in semi-structured environments,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2021, pp. 6534–6540.

[11] L. Li, M. A. Cheema, H. Lu, M. E. Ali, and A. N. Toosi, “Comparing
alternative route planning techniques: A comparative user study on
Melbourne, Dhaka and Copenhagen road networks,” IEEE Trans. Knowl.
Data Eng., vol. 34, no. 11, pp. 5552–5557, Nov. 2022.

[12] L. Li, M. A. Cheema, M. E. Ali, H. Lu, and D. Taniar, “Continuously
monitoring alternative shortest paths on road networks,” in Proc. VLDB
Endowment, 2020, pp. 2243–2255.

[13] C. Häcker, P. Bouros, T. Chondrogiannis, and E. Althaus, “Most diverse
near-shortest paths,” in Proc. 29th ACM SIG-SPATIAL, Nov. 2021,
pp. 229–239.

[14] A. Moghanni, M. Pascoal, and M. T. Godinho, “Finding shortest and
dissimilar paths,” Int. Trans. Oper. Res., vol. 29, no. 3, pp. 1573–1601,
May 2022.

[15] Z. Luo, L. Li, M. Zhang, W. Hua, Y. Xu, and X. Zhou, “Diversified
top-k route planning in road network,” Proc. VLDB Endowment, vol. 15,
no. 11, pp. 3199–3212, Jul. 2022.

[16] V. Akgün, E. Erkut, and R. Batta, “On finding dissimilar paths,” Eur. J.
Oper. Res., vol. 121, no. 2, pp. 232–246, Mar. 2000.

[17] Y. Chen, M. G. H. Bell, and K. Bogenberger, “Reliable pretrip multipath
planning and dynamic adaptation for a centralized road navigation
system,” IEEE Trans. Intell. Transp. Syst., vol. 8, no. 1, pp. 14–20,
Mar. 2007.

[18] M. Kobitzsch, “An alternative approach to alternative routes: Hidar,”
in Proc. Eur. Symp. Algorithms. Berlin, Germany: Springer, 2013,
pp. 613–624.

[19] A. H. Jones, “Method of and apparatus for generating routes,”
U.S. Patent 8 249 810, Aug. 21, 2012.

[20] Y.-J. Jeong, T. J. Kim, C.-H. Park, and D.-K. Kim, “A dissim-
ilar alternative paths-search algorithm for navigation services: A
heuristic approach,” KSCE J. Civil Eng., vol. 14, no. 1, pp. 41–49,
Jan. 2010.

[21] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths with
diversity,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 488–502,
Mar. 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

FAHMIN et al.: EFFICIENT ALTERNATIVE ROUTE PLANNING IN ROAD NETWORKS 13

[22] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and
D. B. Blumenthal, “Finding K-dissimilar paths with minimum
collective length,” in Proc. 26th ACM SIG-SPATIAL, Nov. 2018,
pp. 404–407.

[23] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and
D. B. Blumenthal, “Finding k-shortest paths with limited overlap,”
VLDB J., vol. 29, no. 5, pp. 1023–1047, Sep. 2020.

[24] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Alternative
routes in road networks,” ACM J. Experim. Algorithmics, vol. 18,
pp. 1–17, Dec. 2013.

[25] R. Bader, J. Dees, R. Geisberger, and P. Sanders, “Alternative route
graphs in road networks,” in Theory and Practice of Algorithms in
(Computer) Systems, Rome, Italy. Berlin, Germany: Springer, 2011,
pp. 21–32.

[26] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A hub-
based labeling algorithm for shortest paths in road networks,” in Proc.
Int. Symp. Experim. Algorithms, 2011, pp. 230–241.

[27] L. Li, M. A. Cheema, M. E. Ali, H. Lu, and H. Li, “Efficiently computing
alternative paths in game maps,” World Wide Web, vol. 26, no. 5,
pp. 3321–3345, Sep. 2023.

[28] I. Pohl, “Bi-directional and heuristic search in path problems,” Ph.D.
dissertation, Stanford Linear Accel. Center, Stanford, CA, USA, 1969.

[29] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A∗

search meets graph theory,” in Proc. 16th Annu. ACM-SIAM Symp.
Discrete Algorithms, Vancouver, BC, Canada, 2005, pp. 156–165.

[30] M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling, “Fast point-to-
point shortest path computations with arc-flags,” in Proc. Shortest Path
Problem DIMACS Workshop, vol. 74, 2006, pp. 41–72.

[31] U. Lauther, “An experimental evaluation of point-to-point shortest path
calculation on road networks with precalculated edge-flags,” in Proc.
Shortest Path Problem DIMACS Workshop, vol. 74, 2006, pp. 19–39.

[32] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in Proc. Experim. Algorithms, 7th Int. Workshop, vol. 5038, 2008,
pp. 319–333.

[33] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and
distance queries via 2-hop labels,” SIAM J. Comput., vol. 32, no. 5,
pp. 1338–1355, Jan. 2003.

[34] G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter, “Minimum time-
dependent travel times with contraction hierarchies,” ACM J. Experim.
Algorithmics, vol. 18, pp. 1–43, Dec. 2013.

[35] B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Improving
time-dependent contraction hierarchies,” in Proc. Int. Conf. Automated
Planning Scheduling, vol. 32, Jun. 2022, pp. 338–347.

[36] C. Chen, L. Gao, X. Xie, L. Feng, and Y. Wang, “2TD path-planner:
Towards a more realistic path planning system over two-fold time-
dependent road networks [application notes],” IEEE Comput. Intell.
Mag., vol. 16, no. 2, pp. 78–98, May 2021.

[37] L. Gao, C. Chen, F. Chu, C. Liao, H. Huang, and Y. Wang, “MOOP:
An efficient utility-rich route planning framework over two-fold time-
dependent road networks,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 7, no. 5, pp. 1554–1570, Oct. 2023.

[38] C. Chen, L. Gao, X. Xie, and Z. Wang, “Enjoy the most beautiful
scene now: A memetic algorithm to solve two-fold time-dependent
arc orienteering problem,” Frontiers Comput. Sci., vol. 14, no. 2,
pp. 364–377, Apr. 2020.

[39] M. Kobitzsch, M. Radermacher, and D. Schieferdecker, “Evolution and
evaluation of the penalty method for alternative graphs,” in Proc. 13th
Workshop Algorithmic Approaches Transp. Model., Optim., vol. 33,
2013, pp. 94–107.

Ahmed Fahmin received the bachelor’s degree in
computer science and engineering from Bangladesh
University of Engineering and Technology (BUET)
and the Master of Information Technology degree
(Hons.) from The University of Melbourne. He is
currently pursuing the Ph.D. degree with the Fac-
ulty of Information Technology, Monash University,
Australia. His research interests include eco-friendly
navigation, applied machine learning, and spatial
databases.

Bojie Shen received the bachelor’s (Hons.) and
Ph.D. degrees from Monash University, Australia,
in 2019 and 2023, respectively. He is currently
a Post-Doctoral Research Fellow with the Fac-
ulty of Information Technology, Monash University.
Throughout the Ph.D. journey, he has published
several peer-reviewed publications featured in pres-
tigious venues, such as AIJ, AAAI, IJCAI, and
ICAPS. His research interests include route plan-
ning, heuristic search, and multi-agent path finding.

Muhammad Aamir Cheema is currently an Asso-
ciate Professor with the Faculty of Information
Technology, Monash University, Australia. He was
a recipient of the 2012 Malcolm Chaikin Prize for
Research Excellence in Engineering, the 2018 Future
Fellowship, the 2018 Monash Student Association
Teaching Award, and the 2019 Young Tall Poppy
Science Award. He has also won two CiSRA best
research paper of the year awards, two invited papers
in the Special Issue of IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING on the best

papers of ICDE, and three best paper awards at ICAPS 2020, WISE 2013,
and ADC 2010, respectively.

Adel N. Toosi received the Ph.D. degree from The
University of Melbourne in 2015. He is currently
a Senior Lecturer and the Director of the Dis-
Net Laboratory, Department of Software Systems
and Cybersecurity, Monash University, Australia.
He has a portfolio of over 70 peer-reviewed publi-
cations in esteemed venues. His publications have
received over 4,000 citations, contributing to a
current H-index of 30. Beyond his citations and
publications, he has significantly advanced the foun-
dations of cloud computing and played a vital role

in creating tools and technologies, such as CloudSim, InterCloud, SipaaS,
Clouds-Pi, Con-Pi, WattEdge, and AutoScaleSim.

Mohammed Eunus Ali is currently a Professor
with the Department of Computer Science and
Engineering (CSE), Bangladesh University of Engi-
neering and Technology (BUET). He is also the
Group Leader of the Data Science and Engineering
Research Laboratory (DataLab), CSE, BUET. His
research papers have been published in top ranking
journals and conferences, such as The VLDB Jour-
nal, IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, DMKD, Information Systems,
PVLDB, ICDE, and UbiComp. His research interests

include spatial databases, spatio-temporal learning, and urban computing.
He served as a Program Committee Member for many prestigious conferences
that include SIGMOD, VLDB, AAAI, and SIGSPATIAL.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Monash University. Downloaded on May 13,2024 at 04:17:33 UTC from IEEE Xplore. Restrictions apply.

