
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficiently Processing Spatial and Keyword
Queries in Indoor Venues

Zhou Shao, Muhammad Aamir Cheema, David Taniar, Hua Lu, and Shiyu Yang

Abstract—Due to the growing popularity of indoor location-based services, indoor data management has received significant research
attention in the past few years. However, we observe that the existing indexing and query processing techniques for the indoor space
do not fully exploit the properties of the indoor space. Consequently, they provide below par performance which makes them unsuitable
for large indoor venues with high query workloads. In this paper, we first propose two novel indexes called Indoor Partitioning Tree
(IP-Tree) and Vivid IP-Tree (VIP-Tree) that are carefully designed by utilizing the properties of indoor venues. The proposed indexes
are lightweight, have small pre-processing cost and provide near-optimal performance for shortest distance and shortest path queries.
We are also the first to study spatial keyword queries in indoor venues. We propose a novel data structure called Keyword Partitioning
Tree (KP-Tree) that indexes objects in an indoor partition. We propose an efficient algorithm based on VIP-Tree and KP-Trees to
efficiently answer spatial keyword queries. Our extensive experimental study on real and synthetic data sets demonstrates that our
proposed indexes outperform the existing solutions by several orders of magnitude.

Index Terms—Indoor query processing, Indoor index, Spatial keyword query

F

1 INTRODUCTION

1.1 Motivation
Due to the recent breakthroughs in indoor positioning technolo-
gies (see [17], and its references), and the widespread use of
smart phones, indoor location-based services (LBSs) are becoming
increasingly popular [5]. Indoor LBSs can be very valuable in
many different domains such as emergency services, health care,
location-based marketing, asset management, and in-store naviga-
tion, to name a few. In such indoor LBSs and many others, indoor
distances play a critical role in improving the service quality. For
example, in an emergency, an indoor LBS can guide people to
the nearby exit doors. Similarly, a passenger may want to find the
shortest path to the boarding gate in an airport, a disabled person
may issue a query to find accessible toilets within 100 meters in a
shopping mall, or a student may issue a query to find the nearest
photocopier in a university campus.

There is a huge demand for efficient and scalable spatial
query-processing systems for indoor location data. Unfortunately,
as we explain next, the outdoor techniques provide below par
performance for indoor spaces and the existing indoor techniques
fail to fully utilize the unique properties of indoor venues resulting
in poor performance.

1.2 Limitations of Existing Techniques
1.2.1 Outdoor techniques
Techniques for outdoor LBSs cannot be directly applied for
indoor LBSs due to the specific characteristics in indoor settings.
Referring to the aforementioned examples, briefly speaking, we
need to not only represent the spaces (airport, shopping center) in
proper data model but also manage all the indoor features (lifts,
escalators, stairs) and locations of interest (boarding gates, exit

• Zhou Shao, Muhammad Aamir Cheema and David Taniar are at Faculty
of Information Technology, Monash University, Australia
E-mail: {joe.shao, aamir.cheema, david.taniar}@monash.edu

• Hua Lu is at Department of Computer Science, Aalborg University,
Denmark. E-mail: luhua@cs.aau.dk

• Shiyu Yang is at School of Software Engineering, East China Normal
University, China. E-mail: syyang@sei.ecnu.edu.cn

doors, and shops) such that search can be conducted efficiently.
Indoor spaces are characterized by indoor entities such as walls,
doors, rooms, hallways, etc. Such entities constrain as well as
enable indoor movements, resulting in unique indoor topologies.

One possible approach for indoor data management is to first
model the indoor space to a graph using existing indoor data
modelling techniques [2], [19] and then applying existing graph al-
gorithms to process spatial queries on the indoor graph. However,
as we demonstrate in our experimental study, this approach lacks
efficiency and scalability – the state-of-the-art outdoor techniques
ROAD [16] and G-tree [37] may take more than one second to
answer a single shortest distance query. This is mainly because the
existing outdoor techniques rely on the properties of road networks
and fail to exploit the properties specific to indoor space. For
example, the indoor graphs have a much higher average out-degree
(up to 400) as compared to the road networks that have average
out-degree of 2 to 4. Consequently, the size of the indoor graphs
is much larger relative to the actual area it covers. For example,
we use the buildings in Clayton campus of Monash University
as a data set in our experiments and the corresponding indoor
graph has around 6.7 million edges and around 41, 000 vertices.
Compared to this, the road network corresponding to California
and Nevada states consists of around 4.6 million edges and 1.9
million vertices [4]. Our experimental study shows that these
outdoor techniques take around 1 second to answer a single indoor
shortest distance query, in contrast, our specialized techniques that
carefully exploit the properties of indoor space can process the
same query in around 10 microseconds.

1.2.2 Indoor techniques
Adopting the idea of mapping the indoor space to a graph and
applying graph algorithms, existing techniques use door-to-door
graph [33] and/or accessibility base graph [19] to process various
indoor spatial queries.
Door-to-door (D2D) graph [33]. In a D2D graph, each door in
the indoor space is represented as a graph vertex. A weighted edge
is created between two doors di and dj if they are connected to
the same indoor partition (e.g., room, hallway), where the edge
weight is the indoor distance between the two doors. Fig. 1 shows
an example of an indoor space that contains 17 indoor partitions

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1: An indoor venue containing 17 partitions and 20 doors

(P1 to P17) and 20 doors (d1 to d20). The corresponding D2D
graph is shown in Fig. 2a where edge weights are not displayed
for simplicity. The doors d1 to d5 are all connected to each other
by edges because they are associated to the same partition P1.
Accessibility base (AB) graph [19]. In an AB graph, each indoor
partition is mapped to a graph vertex, and each door is represented
as an edge between the two partitions it connects. Fig. 2b shows
the AB graph for the indoor space shown in Fig. 1. Since partitions
P1 and P2 are connected by door d4, an edge labeled d4 is created
between P1 and P2 in the AB graph. Partitions P1 and P3 are
connected by two doors d2 and d3, and thus two labeled edges are
created between P1 and P3. Although an AB graph captures the
connectivity information, it does not support indoor distances.
Distance matrix (DM) [19]. A distance matrix can also be used to
facilitate shortest distance/path queries. A distance matrix stores
the distances between all pairs of doors in the indoor space.
Although this allows optimally retrieving the distance between
any two doors (i.e., in O(1)), it requires huge pre-processing cost
and quadratic storage which makes it unattractive for large indoor
venues. Furthermore, the distance matrix cannot be used to answer
k nearest neighbors (kNN) and range queries without utilizing
other structures such as AB graph.

The existing techniques apply graph algorithms on a D2D
graph and/or AB graph to answer spatial queries. For instance,
the state-of-the-art indoor spatial query processing technique [19]
computes the shortest distance between a source point s and
a target point t (shown as stars in Fig. 1) using Dijkstra’s
like expansion on a D2D graph or AB-graph. Although several
optimizations are employed in [19], these techniques essentially
rely on a Dijsktra’s like expansion over the entire graph which is
computationally quite expensive. Consequently, the state-of-the-
art indoor query processing takes more than 100 seconds to answer
a single shortest path query on the Clayton campus data set used
in our experiments (whereas our proposed technique processes the
same query in around 10 microseconds).

1.3 Contributions
To handle fundamental spatial queries, we propose two novel
indoor indexes called Indoor Partitioning tree (IP-Tree) and Vivid
IP-Tree (VIP-Tree) that optimize the indexing by exploiting the
properties of indoor spaces. The basic observation is that the
shortest path from a point in one indoor region to a point in
another region passes through a small subset of doors (called
access doors). For example, the shortest path between two points
located on different floors of a building must pass one of the
stairs/lifts connecting the two floors. The proposed indexes take
into account this observation in their design and have the following
attractive features.
Near-optimal efficiency. Our experimental study on real and
synthetic data sets demonstrates that IP-Tree and VIP-Tree outper-
form the state-of-the-art techniques for indoor space [19] and road
networks [16], [37] by several orders of magnitude. In comparison

(a) Door-to-Door Graph

(b) Accessibility Base Graph

Fig. 2: Indexing Indoor Space

with the distance matrix, that allows constant time retrieval of
distance between any two doors at the cost of expensive pre-
computing and quadratic storage, our VIP-Tree also achieves
comparable (and near-optimal) performance for shortest distance
and path queries.
Low indexing cost. VIP-Tree and IP-Tree have small construction
cost and low storage requirement. For example, for the largest data
set used in our experiments that consists of around 83, 000 rooms
(around 13.4 million edges), VIP-Tree and IP-Tree consume
around 600 MB and can be constructed in less than 2 minutes. In
contrast, it took almost 14 hours to construct the distance matrix
for a much smaller building consisting of around 2, 700 rooms
(around 110, 000 edges).
Low theoretical complexities. Our proposed indexes do not only
provide practical efficiency but also have low storage and com-
putational complexities. Table 1 compares the storage complexity
and shortest distance/path computation cost of our proposed ap-
proach with the distance matrix which has near-optimal computa-
tional complexity. For the data sets used in our experiments, the
average values of ρ and f are less than 4. For our proposed trees,
M is the number of leaf nodes which is bounded by the number of
doors D. Note that VIP-Tree has a significantly low storage cost
compared to the distance matrix but has the same computational
complexity. A detailed theoretical analysis is provided in the
conference version [25] of this paper.
TABLE 1: Comparison of computational complexities. ρ: average
of access doors, f : average number of children in a node, M :
of leaf nodes, D: # of doors, w: # of edges on shortest path

Storage
Shortest Dis-
tance

Shortest Path

IP-Tree O(ρ2f2M + ρD) O(ρ2 logf M) O((ρ2 +w) logf M)

VIP-Tree O(ρ2f2M +
ρD logf M)

O(ρ2) O(ρ2 + w)

DM O(D2) O(ρ2) O(ρ2 + w)

High adaptability. Similar to popular outdoor indexes (such as
R-tree, Quad-tree, G-tree), our proposed indexes follow a branch-
and-bound structure that can be easily adapted to answer various
other indoor queries such as spatial keyword queries. This paper is
an extended version of our earlier paper [25] and, in this paper, we
show that the VIP-Tree can be easily extended to answer spatial
keyword queries on objects in indoor venues that are associated
with textual information. We also propose a novel data structure
called Keyword Partitioning Tree (KP-Tree) to effectively index
the objects in a single indoor partition (e.g., products in a super-
market, medicines in a pharmacy etc.). Our experimental study on
real world data sets demonstrates that the technique that utilizes
VIP-Tree and KP-Trees significantly outperforms the competitors.

The rest of the paper is organized as follows. In Section
2, we present the related work. Our proposed indexes IP-Tree
and VIP-Tree are discussed in Section 3. Section 4 presents

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

the detailed algorithms for indoor spatial queries based on the
proposed indexes. Section 5 presents the details of our proposed
Keyword Partitioning Tree and spatial keyword query processing
algorithm. A detailed experimental evaluation is presented in
Section 6 followed by conclusions in Section 7.

2 RELATED WORK

Indoor Data Modelling Data modelling for indoor space is
fundamental for querying indoor space. In [15], a 3D model is
proposed for indoor space but it fails to support indoor distance
computations. CityGML [1] and IndoorGML [2] are XML based
methods to model and exchange the indoor space data. As stated in
Section 1, the distance-aware model [19] introduces an extended
graph based on an accessibility base graph and D2D graph
that enables indoor distance computations between two indoor
positions.
Spatial Queries in Indoor Space. Several indoor spatial queries
such as shortest distance queries, shortest path queries, kNN
queries and range queries have been studied under various set-
tings [20], [31], [32], [35]. The most notable techniques [19], [33]
have already been discussed in Section 1. Existing research also
studies various other indoor queries such as trip planning queries
and multi-criteria route planning queries [23], [24]. Indexing and
querying moving indoor objects have also been studied in the
past [11], [30].
Spatial Queries in Outdoor Space. Query processing in Eu-
clidean space and road networks [6], [10], [26], [34] is very
well studied. Since an indoor space can be converted into a
D2D graph, various techniques [27], [36], [37] in spatial road
networks can also be applied. G-tree [36], [37] is the state-of-the-
art technique for processing a variety of spatial queries on road
networks. Although our proposed indexes, IP-Tree and VIP-Tree,
are inspired by G-tree, there are some fundamental differences.
Specifically, G-tree uses an existing multilevel graph partitioning
algorithm [14] for graph decomposition whereas we design a
new algorithm that carefully exploits the properties of the indoor
space to minimize the total number of access doors. Also, the
smaller number of access doors in our nodes allows us to use
materialization in the VIP-tree which proves to be a much more
efficient strategy but is not feasible for G-tree. Furthermore, our
algorithms to process shortest path queries, range queries, kNN
queries and spatial keyword queries are also entirely different.
Spatial Keyword Queries in Outdoor Space. Spatial keyword
queries have been extensively studied in Euclidean space [18],
[22], [29]. For example, the Inverted R-tree [38] is proposed that
creates, for each keyword t, an R-tree based on the objects that
contains the keyword t. Inverted R-trees are efficient when the
number of query keywords is small because the query needs to
process only a few R-trees. Information retrieval R-tree (IR2-
tree) [9] aims to address this problem by utilizing signatures that
summarize the keywords contained in the descendent entries of
a node. Information R-tree (IR-tree) [8], [28] utilizes inverted
files for each node that maintains the keywords information in
the node. WIR-tree [29] is similar to IR-tree, but it partitions
the objects according to keyword frequencies instead of spatial
locations. A detailed experimental evaluation comparing different
spatial keyword approaches is presented in [7].

Various spatial keyword queries have also been studied on
road networks [12], [18], [21], [36]. For example, DESKS [18]
considers the direction constraints for keyword queries, while [12]
is designed for large graphs. G-tree [36] has also been utilized
to answer spatial keyword queries. Recently, in [3], the authors
propose a framework, K-SPIN, to answer a variety of spatial

keyword queries on road networks. To the best of our knowledge,
we are the first to focus on spatial keyword queries in indoor space.

3 INDEXING INDOOR SPACE

First, we define some terminology and the data model used in this
paper. An indoor partition that has only one door is called a no-
through partition (e.g., partitions P2, P9 and P10 in Fig. 1) because
no shortest path can pass through this partition. A partition which
has more than γ doors is called a hallway partition. γ is a system
parameter and is a small value (e.g., in this paper, we choose
γ = 4). In Fig. 1, partitions P1, P5, P12 and P17 are the hallway
partitions. All other partitions are called general partitions. A
special indoor entity such as a staircase or an escalator connecting
two floors is considered as a general partition with two doors at its
connecting floors. Similarly, a lift connecting n floors is divided
into n − 1 general partitions where each partition connects two
consecutive floors.

Similar to existing work, we use a door-to-door graph [33]
to model the indoor space. The distances between the doors can
be set appropriately, e.g., set to zero for a lift/escalator if the
distance corresponds to the walking distance or to a non-zero
value if the distance is the travel time. We remark that such
indoor data models can capture all spatial features of indoor
space. If more details of geometric features are required (e.g.,
texture, color, shape of indoor objects), then the CityGML [1]
data objects can be embedded in each partition. Although our
techniques can be immediately applied for directional entities
(e.g., doors/lifts/stairs), for the sake of simplicity, we assume that
all such entities are bidirectional.

3.1 Indoor Partitioning Tree (IP-Tree)
3.1.1 Overview
The basic idea is to combine adjacent indoor partitions (e.g.,
rooms, hallways, stairs) to form leaf nodes and then iteratively
combining adjacent leaf nodes until all nodes are combined into
a single root node. Fig. 3 shows an IP-Tree of the indoor venue
shown in Fig. 1 where the indoor space is converted into four
leaf nodes (N1 to N4). Each leaf node consists of several indoor
partitions. Specifically, N1 = {P1, · · · , P4}, N2 = {P5, · · · , P7},
N3 = {P8, · · · , P12}, and N4 = {P13, · · · , P17}. The leaf nodes
are iteratively merged until root node is formed, e.g., N1 and N2
are merged to form N5.

Definition 3.1. Access door. A door d is called an access door of
a node N if d connects it to the space outside of N (i.e., one can
enter or leave N via d). The set of access doors of a node N are
denoted as AD(N).

In Fig. 1, the access doors of N1 are d1 and d6. IP-Tree stores
the access doors for each node in the tree. Fig. 3 shows the access
doors of each node in the boxes below the nodes, e.g., AD(N1) =
{d1, d6} and AD(N5) = {d1, d7, d10}. Note that the shortest path
from/to a point s in N1 to/from a point t outside of N1 must pass
through one of its access doors d1 and d6.

To efficiently compute shortest distance/path between indoor
locations, the IP-Tree stores distance matrices for leaf nodes and
non-leaf nodes. Below, we provide the details.
Distance matrices for leaf nodes. For each leaf node N , the
distance matrix stores distances between every door di ∈ N to
every access door dj ∈ AD(N). Fig. 3 shows an example of the
distance matrix for the nodeN1 where the distances between every
door di ∈ N1 (i.e., d1 to d6) and every access door dj ∈ AD(N1)
(i.e., d1 and d6) are stored.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3: Indoor Partitioning Tree

To support the shortest path queries, the distance matrix also
stores some additional information. Specifically, for a leaf node
N , in addition to the shortest distance between di ∈ N and dj ∈
AD(N), the distance matrix also stores a door dk on the shortest
path from di to dj . dk is called the next-hop door for the entry
corresponding to di and dj . Specifically, if the shortest path from
di to dj lies entirely inside the node N then dk corresponds to the
first door on the shortest path from di to dj . In Fig. 1, the next-
hop door on the shortest path from d1 to d6 is d2. Therefore, in
the distance matrix of N1 (see Fig. 3), d2 is the next-hop door for
the entry of d1 in the row corresponding to d6. Similarly, d3 is the
next-hop door for the entry corresponding to d2 and d6 because
d3 is the first door on the shortest path from d2 to d6.

If the shortest path from di to dj passes outside of N then dk
corresponds to the first door on the shortest path that is an access
door of at least one leaf node in the tree. Although this scenario
is not common (and Fig. 1 does not have an example of it), this
is critical to efficiently and correctly retrieve the shortest path
between two points (see [25] for details). Finally, if the shortest
path between di and dj does not involve any other door (e.g., d5
to d6), the next-hop door is set as NULL. For better readability, the
matrices in Fig. 3 show only non-null values.
Distance matrices for non-leaf nodes. Consider a non-leaf node
N that has f children N1, N2, · · · , Nf . The distance matrix of N
stores distances between every access door of its children, i.e.,
it stores the distances between all doors in ∪i=1

fAD(Ni). For
example, in Fig. 3, the distance matrix of the node N7 stores the
distances between AD(N5) and AD(N6), i.e., d1, d7, d10 and d20.
Furthermore, for each entry di and dj in the distance matrix of N ,
we also store the first door dk ∈ ∪fi=1AD(Ni) on the shortest path
from di to dj (called next-hop door as stated earlier). Note that dk
in this case is an access door of the children of N and is not any
arbitrary door.

In Fig. 3, the entry in the distance matrix of N7 corresponding
to d1 and d20 stores d10. Note that the first door on the shortest
path from d1 to d20 (d1 → d2 → d3 → d5 → d6 → d10 → d15 →
d20) is d2 but we maintain d10 in the distance matrix because it is
the first door among the access doors of the children of N7 that is
on the shortest path from d1 to d20. The entry corresponding to d1
and d7 has NULL because the shortest path from d1 to d7 does not
contain any access door of the children of N7.

3.1.2 Constructing IP-Tree
The IP-tree is constructed in a bottom-up manner in four steps: 1)
the indoor partitions are combined to create leaf nodes (also called
level 1 nodes); 2) the nodes at each level l are merged to form the
nodes at level l+ 1. This is iteratively repeated until we only have
one node (i.e., root node) at the next level; 3) the distance matrices
for leaf nodes are constructed; 4) the distance matrices of non-leaf
nodes are created. Next, we describe the details of each step.
1. Creating leaf nodes. Two partitions are called adjacent parti-
tions if they have at least one common door (e.g., P1 and P2). We
iteratively merge adjacent partitions and construct the leaf nodes
by considering the following two simple rules.

i. If a general partition has more than one adjacent hallways,
it is merged with the hallway with greater number of common
doors with the general partition. Ties are broken by preferring the
hallway that is on the same floor. If the general partition occupies
more than one floors (e.g., it is a staircase) or if both hallways are
on the same floor, the tie is broken arbitrarily.

ii. Merging of a partition is not allowed if it will result in a leaf
node having more than one hallways. This is because the shortest
distance/path queries between points in different hallways are
more expensive. This rule ensures that all hallways are in different
leaf nodes, which allows us to fully leverage the tree structure to
efficiently process the queries. The algorithm terminates when no
further merging is possible, i.e., every possible merging will result
in the violation of this rule.

Example 3.1. In Fig. 1, the partitions P2 and P3 are combined
with the hallway partition P1. The partition P4 could be combined
with either P5 or P1 because both P1 and P5 have exactly 1
common door with P4 and are on the same floor. We assume that
it is combined with P1. Thus, P1 to P4 are combined to form the
leaf node N1. The hallway P5 cannot be included in the leaf node
N1 because doing so would violate the rule ii. The partitions P6
and P7 are combined with P5 to form a leaf node N2. Similarly,
P8 to P12 are combined to form the node N3 and P13 to P17
are combined to construct the leaf node N4. The algorithm stops
because no further merging is possible without violating rule ii.

2. Merging the nodes of the IP-Tree. Let t be the minimum
degree of the IP-Tree denoting the minimum number of children
in each non-root node. Algorithm 1 shows the details of merging
the nodes at level l (denoted as Nl) to create the nodes at level
l+1 (denoted as Nl+1) such that each node has at least t children.
Alorithm 1 is iteratively called untilNl+1 contains at most t nodes
in which case all these nodes are merged to form the root node.
Below, are the details of the algorithm.

We define degree of a node Ni at level l + 1 to be the number
of level l nodes contained in Ni. A min-heap H is initialized
by inserting all nodes in Nl and the key for each node is set to
its degree initialized to one because no level l nodes are merged
yet (line 1). If two nodes have the same degree, the heap prefers
the node which has a smaller number of adjacent nodes. This is
because some nodes can only be merged with exactly one other
node and such nodes should be given preference in merging, e.g.,
in Fig. 1 and Fig. 3, N1 is merged with N2 and N4 is merged with
N3 because both N1 and N4 can only be merged with exactly one
other node.

Algorithm 1: createNextLevel(Nl, t)
Input : Nl: nodes at current level l, t: minimum degree
Output : Nl+1: nodes at the next level l + 1

1 insert each Ni ∈ Nl in a min-heap H with key
Ni.degree = 1;

2 while H.top().degree < t do
3 deheap a node Ni from H;
4 Nj ← node with highest # of common doors with Ni;
5 remove Nj from H and merge Ni and Nj to form Nk;
6 insert Nk in H with key Ni.degree + Nj .degree;
7 move nodes from H to Nl+1;

The nodes are iteratively de-heaped from the heap and merged
with one of the adjacent nodes with a goal to minimize the total
number of access doors of the nodes at the parent level. Let
|AD(Ni)| denote the number of access doors of a node Ni and
|AD(Ni)∩AD(Nj)| denote the number of common access doors
in nodes Ni and Nj . If the two nodes Ni and Nj are merged into
a parent node N , the number of access doors in the parent node

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

N is |AD(Ni)| + |AD(Nj)| − 2 × |AD(Ni) ∩ AD(Nj)|. Thus,
the nodes that have a greater number of common access doors are
given higher priority to be merged together (line 4). After a node
Ni and Nj are merged to form a node Nk, the node Nk is inserted
in the heap (line 6). The algorithm stops when the top node in the
heap has a degree at least t (line 2). This implies that every node
in the heap contains at least t children.
3. Constructing distance matrices for leaf nodes. Recall that
the distance matrix for a leaf node N stores the distance and the
next-hop door on the shortest path between every door di ∈ N
to every access door dj ∈ AD(N). We compute these distances
and the next-hop doors using Dijkstra’s search on the D2D graph.
Specifically, for each access door dj of a leaf node N , we issue a
Dijkstra’s search until all doors in the node N are settled. Since
the doors of the leaf nodes are close to each other, this Dijkstra’s
search is quite cheap as only the nearby nodes in the D2D graph
are visited.

Example 3.2. To create the distance matrix of leaf node N1 that
contains doors d1 to d6, we first issue a Dijkstra’s search starting
at d1 on the graph shown in Fig. 2a and expand the search until all
doors d1 to d6 are settled. The distances and next-hop doors are
populated in the distance matrix row corresponding to the door d1.
The same process is repeated for the other access door d6.

4. Constructing distance matrices for non-leaf nodes. Let leaf
nodes be on level 1 of the tree (the lowest level) and root node be
at the highest level of the tree. We construct the distance matrices
of the nodes in a bottom-up fashion. We construct the distance
matrices of nodes at level l > 1 of the IP-Tree using a graph
called level-l graph denoted as Gl.

Level-l graph (Gl). The vertices of Gl correspond to the access
doors of the nodes at (l− 1)-th level of the tree. An edge between
two doors di and dj is created in Gl if both di and dj are the
access doors of the same node at (l − 1)-th level. The weight of
the edge is dist(di, dj) which has already been computed when
the distance matrices of (l − 1)-th level are computed. Note that
Gl is a connected graph because, at every level l, all nodes in the
indoor space are connected through common access doors.

Fig. 4: (a) G2: level-2 graph; (b) G3: level-3 graph

Fig. 4 shows level-2 and level-3 graphs for our running
example. To construct the distance matrices of level 2 nodes of
the tree shown in Fig. 3, we use the graph in Fig. 4(a) where the
vertices correspond to the access doors of the nodes at level 1 (i.e.,
leaf nodes) of the tree (e.g., d1, d6, d7, d10, d15, d20). In G2 shown
in Fig. 4(a), edges are created between d6, d7 and d10 because
these are the access doors in the same leaf node (see Fig. 3).
Similarly, to construct the distance matrices of level 3 nodes, we
use the graph shown in Fig. 4(b) where the vertices of the graph
are the access doors of level 2 nodes.

The distance matrix of a node N at level l of the tree is then
computed using a Dijkstra’s like expansion on Gl for each door di
until all other doors dj in N have been reached. This operation
is quite efficient because i) the graph is significantly smaller than
the original D2D graph and ii) the Dijkstra’s expansion is not
expensive because the relevant doors are close to each other in Gl.

Example 3.3. To construct the distance matrix of node N5, the
graph shown in Fig. 4(a) is used. The distance matrix for N5
contains the entries for doors d1, d5, d7 and d10. To populate
the column corresponding to d1, a Dijkstra’s like expansion is
conducted at d1 on the graph shown in Fig. 4(a) until all other
doors (i.e., d5, d7 and d10) are reached. The entries for other doors
are populated in the same way.

In addition to IP-tree, our algorithms also require the D2D
graph to compute the shortest distance/path between two points
located in the same leaf node of the IP-tree. The total space
complexity of the IP-Tree is O(ρ2f2M + ρD) where D is the
total number of doors in the indoor space, ρ is the average number
of access doors in a node, f is the average number of children for
a non-leaf node and M is the total number of leaf nodes which is
bounded by P (the total number of partitions in the indoor space).
Our experiments on three real data sets demonstrate that f and
ρ are small in practice (less than 4 for all real data sets). For a
detailed theoretical analysis, please see [25].

3.2 Vivid IP-Tree (VIP-Tree)

Vivid IP-Tree (VIP-Tree) is very similar to IP-tree except that
it stores, for each door di in the indoor space, the following
additional information. Let N be the leaf node that contains the
door di. For every door dj that is an access door in one of
the ancestor nodes of N , VIP-tree stores dist(di, dj) as well as
the next-hop door dk on the shortest path from di to dj . This
information can be efficiently computed by our efficient shortest
distance/path algorithms using IP-tree. As shown in [25], the space
complexity of VIP-Tree is O(ρ2f2M + ρD logf M).

4 SPATIAL QUERY PROCESSING

Our proposed indexes, IP-Tree and VIP-Tree, can be used to
efficiently answer various spatial queries such as shortest distance,
shortest path, kNN and range queries. Since the focus of this ex-
tended paper is on processing spatial keyword queries (Section 5),
due to the space limitation, this section only presents how to
answer shortest distance queries using VIP-Tree. The interested
readers are referred to the conference version [25] for the details
of other spatial queries mentioned above.

Now, we present our algorithm to compute the indoor shortest
distance dist(s, t) between a source point s and a target point t
using VIP-Tree. When both s and t are located in the same leaf
node, dist(s, t) can be computed using D2D graph (similar to the
existing approaches). Since s and t are close to each other in D2D
graph, the distance computation using Dijkstra’s like expansion
is not expensive in this case. Next, we show how to compute
dist(s, t) when both s and t are in different leaf nodes.

Let Leaf(p) denote the leaf node of the VIP-Tree that
contains the point p. The following lemma is a key to compute
dist(s, t) for two arbitrary points s and t located in different leaf
nodes Leaf(s) and Leaf(t).

Lemma 4.1. Let LCA(s, t) be the lowest common ancestor node
of Leaf(s) and Leaf(t). Let Ns (resp. Nt) be the child of
LCA(s, t) which is an ancestor of Leaf(s) (resp. Leaf(t)).
The shortest path from s to t must path through at least one access
door of Ns and at least one access door of Nt.

Proof. We first show that t lies outside Ns. We prove this by
contradiction. Assume that t is inside Ns. If t is inside Ns then
Ns must be a common ancestor of the leaf nodes containing s
and t. However, Ns is the child of the lowest common ancestor

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

of Leaf(s) and Leaf(t). Hence, Ns cannot be a common
ancestor which contradicts the assumption that t lies inside Ns.

Since t lies outside Ns and s lies inside Ns, the shortest path
from s to t must pass through an access door of Ns (by definition
of access doors). Following the same reasoning, the shortest path
from s to t must also pass through an access door of Nt.

Consider the example of Fig. 1 and Fig. 3 where s is in N1
and t is in N4, LCA(s, t) is the node N7, Ns is N5 and Nt is N6.
The shortest path between s to t must pass through an access door
of N5 and an access door of N6, e.g., the shortest path in Fig. 1
passes through d10 which is an access door for both N5 and N6.
By using the above lemma, dist(s, t) can be computed as follows.

min
∀di∈AD(Ns),∀dj∈AD(Nt)

dist(s, di) + dist(di, dj) + dist(dj , t)
(1)

Note that dist(di, dj) is stored in the distance matrix of
LCA(s, t) because Ns and Nt are the child nodes of LCA(s, t)
and di and dj are the access doors of Ns and Nt, respectively.
dist(s, di) for every di ∈ AD(Ns) can also be efficiently
computed because VIP-tree materializes distances between each
door ds of the partition containing s and each di ∈ AD(Ns).
Similarly, dist(dj , t) can also be efficiently computed using VIP-
Tree. We further improve the computation cost of dist(s, di) and
dist(dj , t) using only the superior doors [25] of the partitions
containing s and t. The interested readers are referred to [25] for
the details of how superior doors are used to efficiently compute
the distances and a detailed theoretical analysis of our shortest
distance algorithms.

5 SPATIAL KEYWORD QUERY PROCESSING

Spatial keyword queries have been extensively studied in outdoor
space. Arguably, the two most popular and well studied spatial
keyword queries are Boolean kNN queries and Top-k kNN queries
(see [17] for details). To the best of our knowledge, we are the first
to study spatial keyword queries in indoor space. In this paper, we
focus on processing indoor boolean kNN spatial keyword (iBkNN-
SK) queries. However, our proposed ideas can be extended to
answer a variety of other spatial keyword queries.

5.1 Problem Definition
We represent an indoor spatio-textual object o as a spatial point
located in an indoor venue and a set of keywords (terms) from
a vocabulary V , represented by o.loc and o.T , respectively. We
often use o to refer to o.loc when there is no ambiguity.

Definition 5.1. iBkNN-SK Query. Given a set O of spatio-
textual objects, a query object q where q.loc is its indoor location
and q.T is the set of query keywords, an iBkNN-SK is to find k
closest objects to q.loc that contain every keyword in q.T .

Example 5.1. Take Fig. 5 as an example that shows a set of
spatio-textual objects O = {o1, o2, ..., o12} in an indoor venue.
Assume that a user located at query point q wants to find the
nearest object (i.e., k=1) which contains keywords t1 and t2
(q.T ={t1, t2}). The object o5 is returned as the result because
it is the closest object to q containing both t1 and t2.

5.2 Some possible solutions
In this section, we briefly discuss how to extend existing tech-
niques to answer spatial keyword queries in indoor environment.
Extending Distance-aware Model (DistAw) [19]. The distance
aware model is the state-of-the-art algorithm for indoor query

Fig. 5: Example of iBoolean-kNN Query

processing. To solve iBkNN queries, we embed the keyword
information with each indoor partition. Specifically, for each
indoor partition containing at least one object, the keyword set
of the partition is the union of the keywords of the objects in
the partition. During search process, DistAw uses the accessibility
base graph and the keyword set for each partition to prune the
un-necessary partitions.
DistAw++. In DistAw, indoor distances are computed during the
expansion process. To improve the efficiency, the authors proposed
to utilize a distance matrix that materializes indoor distances
between all pairs of doors. This results in significant improve-
ments in query processing time at the cost of quadratic storage
requirement. We use DistAw++ to indicate a version of DistAw
that uses a distance matrix to accelerate the query processing.
Extending G-tree [36]. As discussed earlier, to adopt outdoor
techniques like G-tree, the indoor space is converted into a D2D
graph. G-tree index is then built on this D2D graph. An inverted
list is added for each node of the G-tree to efficiently prune un-
necessary nodes during the query processing.
Extending VIP-Tree. We extend VIP-Tree by adding an inverted
list for each node of the VIP-Tree in a way similar to existing
spatial keyword indexes for outdoor techniques such as IR-tree [8],
[28], i.e., for each VIP-Tree node, we store a set of all keywords
in its sub-tree. The modified VIP-Tree is called inverted VIP-Tree
(IVIP-Tree).

Our experimental results (see Fig. 11 in Section 6.2.2) show
that IVIP-tree is up to an order of magnitude better than all other
approaches discussed above. This shows the effectiveness and
adaptability of VIP-tree for different settings.

Next, we propose another novel data structure called Keyword-
Partitioning tree (KP-tree) specifically designed to handle spatio-
textual objects in indoor partitions such as products in supermar-
kets and books in a library etc. A KP-tree is created for each indoor
partition and allows efficient retrieval of relevant objects when the
search reaches a particular partition. Each indoor partition in the
IVIP-tree is linked to its KP-tree. Our experimental study shows
that the KP-Trees further improve the performance of IVIP-Tree
by up to an order of magnitude.

5.3 Keyword-Partitioning Tree (KP-Tree)
5.3.1 Motivation
Recall that the existing techniques map an indoor venue to a graph
where a node represents a door or a partition. The indoor graph is
then traversed to answer the queries and when the search reaches
a partition, the objects in it are retrieved to process the query.
Typically, an indoor partition contains a reasonably large number
of objects such as products in a supermarket, books in a library or
medicines in a pharmacy etc. For example, in the real world data
set that we use in our experimental study, a single JB Hi-Fi store
(an entertainment retailer in Australia) contains around 30, 000
different products. To efficiently answer the queries, once the
search reaches an indoor partition, specialized indexes should be

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

employed to efficiently retrieve the relevant objects in the partition.
One possible solution is to use one of the existing approaches
(e.g., inverted lists, IR-tree) to index the spatio-textual objects in
a partition. However, we note that these techniques have certain
limitations for indoor datasets as explained next.

Inverted lists can be utilized to retrieve relevant objects in a
partition. Specifically, for each door di of the indoor partition and
for each keyword tj , an inverted list is created which stores the
objects containing tj in ascending order of their distances from
the door di. Fig. 6 shows an example where the indoor partition
contains 12 objects and has only one door d1. For each unique
keyword (t1 to t4), an inverted list is created that stores the relevant
objects in ascending order of their distances from d1. These lists
can be used to prune some irrelevant objects. Assume that a query
q is located outside the partition where q.T ={t1, t4}. Once the
search reaches this partition, the inverted lists of t1 or t4 can
be accessed to find the nearest objects containing both of the
keywords. However, many objects in the inverted lists may not
contain all query keywords resulting in sub par performance. For
example, the closest object containing both keywords is o2 but
this object is located at the end of the inverted lists t1 and t4. In
other words, the algorithm needs to access many irrelevant objects
before finding the answer.

Fig. 6: Inverted List

Another possible approach is to use spatial keyword indexes
like IR-Tree [8] for each partition. These indexes typically group
spatially close objects into nodes which are further hierarchically
grouped into parent nodes until a root node is formed. Each
node in the tree contains a summary of all keywords contained
in the subtree rooted at this node. During query processing, a
node may be pruned if its summary does not contain all query
keywords. Since the objects are mainly grouped based on their
spatial closeness, the keyword summaries may not be very useful
in pruning. This is especially problematic for indoor venues where
density of the objects is quite high (a small shelf may have
hundreds of different products). In Fig. 6, assume that a node
groups the objects o6, o8 and o9. The keyword summary of this
node would contain all unique keywords for the partition (i.e., t1
to t4) and, as a result, this node (and all of its ancestor nodes)
lose pruning effectiveness. We also remark that, in real world data
sets, the number of objects that satisfy query keywords is typically
small. Therefore, techniques that can efficiently filter the objects
satisfying keyword criteria are expected to perform better than the
approaches that mainly focus on spatial filtering.

There exist some indexing techniques such as WIR-Tree [29]
that aim to index objects based on the keywords similarity instead
of spatial closeness of the objects. However, these techniques are
adversely affected by an object that contains many keywords. As-
sume that there exists an object that contains all of the keywords.
When this object is grouped with some other objects in a leaf node,
the keyword summary of this leaf node (and each of its ancestor
node) would contain all of the keywords thus losing the pruning
ability for the whole branch.

For the sake of only this example, assume that o1 in Fig. 6
contains all the keywords t1, t2, t3 and t4. Fig. 7(b) shows the
corresponding WIR-tree. The object o1 is grouped with o2 in the
node W1 which contains all query keywords. Consequently, the

node W1 and all its ancestor nodes (W3 and W9) lose pruning
ability, i.e., every query would need to traverse these three nodes.

Fig. 7: WIR-tree and KP-Tree for the objects in Fig. 6 except that
we assume o1 contains all four keywords

In this paper, we propose a new index called Keyword Par-
titioning Tree (KP-Tree) to address the limitations described
above. The proposed index has two distinct features that helps
addressing the limitations: 1) objects are grouped mainly based
on their keywords; and 2) unlike most of the existing indexes,
objects in KP-Tree are not necessarily indexed at the leaf nodes.
Instead, objects having more keywords are likely to be indexed
at intermediate nodes higher in the tree structure which addresses
the problem with indexes like WIR-Tree. For example, Fig. 7(a)
shows KP-Tree for the same example for which WIR-Tree was
shown. In the KP-Tree, the object o1 is indexed at the root node,
and as a result, its children nodes do not lose pruning capabilities.
We present more details of KP-Tree in the next section. Note that,
for the rest of the paper, we use the objects in Fig. 6 as represented
and do not assume that o1 contains all keywords.

5.3.2 Overview of KP-Tree
We give a brief overview of KP-Tree and some of its properties
before formally describing its construction in next section. Fig. 8
is used as an example to illustrate KP-Tree for the objects in Fig. 6.
Each node R in KP-Tree consists of a list of keywords represented
as R.T . Specifically, for every node R, R.T is the union of the
keywords contained in its children. For example, R9.T = R7.T ∪
R8.T = {t1, t2, t3, t4}. In KP-tree, each object o is attached with
a node R if o.T = R.T . For example, the object o1 is associated
with the node R2 because R2.T = o1.T = {t1, t2, t4}. Similarly,
the objects o2 is associated with R1 because it contains t1 and
t4. Note that KP-Tree is different from most of the existing tree
structures in the sense that the objects may be associated with non-
leaf nodes. KP-Tree has two kinds of nodes: fruitful nodes (shaded
nodes) and fruitless nodes (white nodes). A fruitful node is a node
that has at least one object attached to it. In contrast, a fruitless
node does not have any object attached to it. In Fig. 8, R9 and R8
are fruitless nodes and all other nodes are fruitful nodes.

A node in KP-Tree is also linked to its pre-computed object
and node matrices. An object matrix records distance from each
door d of the partition to each object o attached with the node,
e.g., see the object matrix for R3. A node matrix for a node R
records the minimum distance from each door d to each child node
Ri of R. The minimum distance mindist(d,Ri) is the minimum
distance from d to any object contained in the sub-tree rooted at
Ri. Consider the node matrix for R7 in Fig. 8. The minimum
distance from d1 to R1 is 5 because the minimum distance from
d1 to the objects in the sub-tree rooted at R1 (i.e., o2, o4, o5, o8
and o12) is dist(d1, o12) = 5.

The query is processed in a traditional best-first manner using a
heap that stores entries according to their minimum distances from
q where distances are obtained utilizing the distance matrices. An
entry e is pruned if q.T * e.T . For each node retrieved from the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 8: KP-Tree for the objects in Fig. 6

heap, its children that contain all query keywords are inserted in
the heap. Furthermore, if the node is fruitful, the objects associated
with it are also inserted in the heap. Consider the query q in our
running example located on the door d where q.T = {t1, t4} and
k = 1. First, the root node R9 is accessed and its child R7 is
inserted in the heap whereas R8 is ignored because it does not
contain all query keywords. Next, R7 is accessed and its child
R1 is inserted in the heap with key 5 whereas R2 is ignored.
Furthermore, since R7 is a fruitful node, its object o1 is also
inserted in the heap with key 32. Next R1 is accessed and its
object o2 is inserted in the heap with key 30. Its child R3 is
ignored because it does not contain all query keywords. Finally,
the object o2 is retrieved from the heap and is reported as answer.

The above example illustrates how to process a query consid-
ering objects in a single partition. In Section 5.4, we present the
details of how the VIP-Tree and KP-Tree are utilized to process
queries in an indoor venue containing many paritions.

5.3.3 Constructing KP-Tree
A KP-Tree is constructed in 4 steps: 1) fruitful nodes are created
by grouping the objects having exactly the same keywords; 2)
fruitful subtrees are constructed using the fruitful nodes; 3) the KP-
Tree is constructed using the fruitful subtrees built in the previous
step and a keyword graph; 4) the distance matrices are constructed
for each node. Next, we describe the details of each step.
1) Constructing fruitful nodes. In this step, the objects that
have exactly the same set of keywords are grouped together to
form fruitful nodes. For example, objects o3, o9 and o11 have two
keywords t2 and t4 and they are combined to construct a fruitful
node R2. Note that there may be fruitful nodes that have exactly
one object. E.g., o1 is the only object containing t1, t2 and t4 and
a fruitful node R7 is constructed that contains o1. In Fig. 8, the
shaded nodes are the fruitful nodes.
2) Constructing fruitful subtrees. In this step, the fruitful
nodes are hierarchically arranged to form possibly more than one
subtrees. A fruitful subtree satisfies the property that, for each
nodeR and its parent nodeRp,Rp contains all keywords ofR, i.e.,
R.T ⊂ Rp.T . Note that R.T , Rp.T because each fruitful node
constructed at the previous step is associated with a unique set of
keywords. For a nodeR, there may be more than one fruitful nodes
containing all keywords of R. These nodes are called potential
parents for node R. Among these potential parents, we choose
a node Rp to be the parent of R that has the smallest number

of keywords. If two potential parents have the same number of
keywords, the node with the smaller number of children is chosen
to be the parent. If two nodes have the same number of keywords
and children, ties are broken arbitrarily.

In Fig. 8, the potential parents for R3 are R1, R4 and R7. The
node R7 has more keywords than R1 and R4 and is not considered
to be the parent of R3. R1 and R4 both have exactly two keywords
and currently have no child so an arbitrary decision is made and
R1 is chosen to be the parent of R3.

Algorithm 2: Constructing sub-trees
Input : R: a set of fruitful nodes

1 for each node R ∈ R in ascending order of # of keywords do
2 choose a parent node Rp;
3 if Rp is NULL then
4 Set R as the root of its subtree;
5 else
6 set Rp as the parent of R in its subtree;

Algorithm 2 shows the details of constructing fruitful subtrees
using a set of fruitful nodes R. The nodes are accessed in
ascending order of their number of keywords, i.e., the subtrees
are constructed in a bottom-up approach. If there is no potential
parent for a node R, it indicates that this node is the root node
for a fruitful subtree. For example, in Fig. 8, there are no potential
parents for the nodesR4,R5 andR7 and these nodes correspond to
the root nodes for three fruitful nodes. The fruitful subtree rooted
at R7 contains the nodes R1, R2, R3 and R6. Note that some
fruitful nodes consist of only one node (e.g., R4 and R5).
Remark. The height of the tallest fruitful subtree is bounded by
the length of the longest superset chain in the data set. A superset
chain is a chain of objects {o1, · · · , om} such that, for each 1 <
i ≤ m, oi.T ⊃ oi−1.T , i.e., keyword set of i-th object is a superset
of the keywords of (i − 1)-th object. In Fig. 6, {o10, o3, o1} is a
superset chain (see objects under nodes R6, R2 and R7 in Fig. 8).
It is easy to see that the maximum height of any fruitful subtree
is equal to the number of objects in the longest superset chain in
the data set (e.g., 3 in Fig. 8). In the worst case, the length of the
longest superset chain is equal to the number of objects in the data
set. However, in real-world scenarios, the height of the fruitful
subtree is small because the real world data sets do not have long
superset chains (an implication of Zipf’s law [3]). We confirmed
this by using our real world data sets and found that the maximum
height of any fruitful subtree is 5.
3) Constructing KP-Tree using keyword graph. In this step,
the root nodes of the subtrees constructed in the previous step are
used to construct KP-tree (e.g., the nodes R4, R5 and R7 are taken
as input and a KP-Tree is constructed). KP-Tree is constructed
in a top-down approach where each node is split into children
such that the overlap (the number of common keywords) between
its child nodes is minimized. Let X be the number of common
keywords between two child nodes. Each query that contains these
common keywords will need to traverse through both of the child
nodes (and possibly branches below them). Thus, a smaller X is
more effective as fewer queries would require traversing through
more than one branch. Thus, we aim to minimize the overlap of
keywords among children. As noted in [29], optimally dividing the
objects in to nodes while minimizing the overlap of the keywords
is NP-hard. While there may be other intuitive heuristics possible,
in this paper, we use an intuitive and effective heuristic approach
based on a keyword graph and a graph partitioning algorithm to
guide the KP-Tree construction. Next, we describe the details –
we use node to refer to an entity in the KP-Tree and vertex to refer
to an entity in the keyword graph.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 9: Constructing KP-Tree using a keyword graph

Each root node of the subtrees constructed in the previous step
forms a vertex of the keyword graph. Every pair of vertices that
have at least one common keyword are connected to each other
by an edge where the edge weight is the number of common
keywords between the two vertices. If the keyword graph is
disconnected, we arbitrarily add edges with weight zero (between
disconnected components) to obtain a connected graph. Consider-
ing the example Fig. 8 where the root nodes of the subtrees are R4,
R5 and R7 and these correspond to three vertices in the keyword
graph. The vertices corresponding to R4 and R5 are connected
to each other via an edge with weight 1 because the number of
common keywords between R4 and R7 is 1. Next, we describe
how the keyword graph is used to construct the KP-Tree.

Initially, a root node of the KP-Tree is created which contains
all the keywords. A graph partitioning algorithm is used that cuts
the keyword graph into f disconnected components where f is
the maximum number of children for each intermediate node
of the KP-Tree. Each disconnected component of the keyword
graph corresponds to one child node which is associated with
all the keywords in this disconnected component. Since the goal
is to minimize the overlap of keywords among the child nodes,
the graph partitioning algorithm aims at minimizing the total
weight of the edges that connect the disconnected components.
Each node of the KP-Tree is recursively decomposed using the
above procedure until it contains at most α vertices. Since optimal
graph partitioning is NP-Hard, we adopt a famous heuristics
algorithm, called the multilevel partitioning algorithm [13] for
graph partitioning.

Example 5.2. We illustrate the algorithm using an example
assuming that the root nodes of the fruitful subtrees at the previous
step are {R1, R2, · · · , R14}. Fig. 9(a) shows a sample keyword
graph. To avoid mixup between nodes in KP-Tree and vertices in
the keyword graph, we refer to a node of KP-Tree as Ni and a
vertex in keyword graph as Ri. The root node N0 contains all
keywords (t1, · · · , t10). Assuming f = 2, the graph is partitioned
into two graphs g1 and g2 as shown in Fig. 9(a) minimizing the
total weight of the edges connecting g1 and g2. The children of
N0 in KP-tree are two nodes (N1 and N2) obtained using the
disconnected components, i.e., the node N1 corresponds to g1
and contains all keywords contained in g1 (keywords t1, · · · , t6)
and the node N2 corresponds to g2 and consists of all keywords
in g2 (t1, t7, t8, t9 and t10) – the common keyword t1 is shown
in bold. Next, the children of N1 are computed by recursively
partitioning the graph g1 into g3 and g4. Similarly, the graph g2 is
partitioned into g5 and g6 to obtain the children nodes of N2. Note
that each Ri in Fig. 9(b) corresponds to the root node of a fruitful

subtree constructed in the previous step which implies that Ri is
not necessarily a leaf node in KP-Tree.

4) Constructing object and node matrices. For each fruitful node
R in KP-Tree, an object matrix is created to store the distances
between every door d of the partition P and every object o of the
partition. Consider the indoor partition in Fig. 6 which only has
one door d1. For node R3 in Fig. 8, the object matrix stores the
distances between d1 and the objects o4, o5, o8 and o12.

For each non-leaf fruitful and fruitless node R of the KP-
Tree, we also create a node matrix. Specifically, for each non-leaf
node R, the node matrix stores minimum distance mindist(d,Ri)
between every door d of the partition and each child Ri of
R where mindist(d,Ri) corresponds to the minimum distance
from d to any object in the subtree rooted at Ri. In Fig. 8,
the object matrix for R7 stores mindist(d1, R1) = 5 because
the objects in the tree rooted at R1 are o2, o4, o5, o8 and o12
and dist(d1, o12) = 5 is the smallest distance from d to these
objects. Similarly, mindist(d1, R2) = 12 is also stored in the
node matrix. We construct the object and node matrices in a
bottom-up manner. Thus, the minimum distances from d to a node
Ri can be efficiently computed using the object and node matrices
of the children.

5.3.4 Handling object updates
In this section, we discuss how to update KP-Tree when the
objects change their locations (i.e., products are moved to different
aisles) or when objects are deleted/added from/to a partition. If the
keywords of an object change, we treat it as deleting the object and
then adding a new object with updated keywords.
Handling location update If the location of an object o is
changed, we update the distance matrix of the fruitful node asso-
ciated with the object. Specifically, we compute new distances of
o from each door dj of the partition and update the relevant entry
in the distance matrix for the door dj . Then, we iteratively access
its parent node and update the distance matrix if the minimum
distance has changed. We continue this bottom-up update until the
distance matrix of the parent node does not require to be changed
(i.e., its minimum distance is not affected by the update).
Handling object deletion. To delete an object o with keywords
T , we first locate the fruitful node that contains o. This can be
achieved in O(1) by maintaining an array that records, for each
object, the fruitful node that contains it. The object is then deleted
from this node and the distance matrix of the node is updated
by removing the corresponding entry. Then, the distance matrices
of the parent nodes are iteratively updated as required using a
bottom-up traversal. If the object is the only object at the fruitful

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

node, then the fruitful node is deleted and its children are assigned
to be the children of its parent.
Handling object insertion. To insert an object o with keywords
o.T , if a node in KP-Tree with exactly the same keywords exists,
we simply add the object to this node and update the distance
matrices of this node and its parent nodes as required. Otherwise,
we handle the object insertion as follows. We start a top-down
traversal from the root of the KP-Tree and continue traversing
down a nodeR that contains all keywords of the object, i.e., o.T ⊆
R.T . If there are more than one such nodes R, we choose a node
R with a smaller subtree below it. The traversal stops at a node R
when none of its child Rc contains all of the object’s keywords,
i.e., for each child Rc of R, o.T * Rc.T . A fruitful node Ri is
created with keywords Ri.T set to o.T and Ri becomes a child
node of R (recall R contains all keywords of Ri). Finally, distance
matrix of Ri is computed and the distance matrices of its parent
nodes are iteratively updated if required.

5.4 Query Processing

We index the indoor venue using IVIP-Tree and, for each indoor
partition P , we create a KP-Tree that indexes the objects inside it.
One possible approach to answer an indoor boolean kNN spatial
keyword (iBkNN-SK) query is to use an algorithm very similar to
the traditional branch-and-bound kNN algorithm except that the
nodes of the IVIP-Tree that do not contain all query keywords are
ignored and, when the search reaches a partition P , its KP-Tree
is traversed to efficiently retrieve the objects containing all query
keywords and updating kNNs accordingly. However, this approach
may be sub optimal as explained below.

Assume a nearest neighbor query q and two partitions P1 and
P2 such that mindist(q, P1) < mindist(q, P2). In this case, the
algorithm will first traverse the KP-Tree of P1 to retrieve the
relevant objects from P1. Suppose P1 contains numerous relevant
objects but the actual nearest neighbor is in the partition P2. The
algorithm will first retrieve all relevant objects from P1 before
accessing the partition P2 and finding the actual nearest neighbor.
In this case, a complete traversal of the KP-Tree of P1 may be
un-necessary and traversing it only partially may improve the
performance. To achieve this, we propose to use a single min-heap
that stores the entries from IVIP-Tree as well as the entries from
different KP-Trees to avoid un-necessarily accessing all objects
from a partition. We present the details below.

Algorithm 3 shows our proposed algorithm to answer iBkNN-
SK queries. Similar to the traditional kNN algorithms, dk which
refers to the distance of current kthNN is initialized to infinity. A
min-heap H is used to allow accessing the entries of the IVIP-Tree
and the KP-Trees in ascending order of their minimum distances
from q. If the de-heaped entry N is a non-leaf node of the IVIP-
Tree, the algorithm inserts every child N ′ of N in the min-heap
that contains all query keywords. If the de-heaped entry N is a
leaf node of the IVIP-Tree, for each partition Pi of this leaf node
that contains all query keywords, the algorithm inserts the root Ri
of the KP-Tree of Pi in the min-heap with mindist(q,Ri) where
mindist(q,Ri) can be efficiently obtained using node matrices
of the node. If the de-heaped entry N is a node of the KP-Tree
for a partition, the algorithm inserts in the min-heap every child
N ′ of N that contains all query keywords. Furthermore, if N
is a fruitful node, all the objects associated with N that contain
all query keywords are also inserted in the min-heap. Finally, if
the de-heaped entry N refers to an object, this object is added
to the answer set and dk is updated accordingly. The algorithm
terminates when mindist(q,N) for a de-heaped node N is not
smaller than dk.

Algorithm 3: iBkNN-SK query processing algorithm

1 dk =∞; /* distance to current kthNN */;
2 Initialize a heap H with root of the IVIP-tree;
3 while H is not empty do
4 de-heap an entry N from heap;
5 if mindist(q, N) ≥ dk then
6 return kNN;
7 if N is a non-leaf node of IVIP-tree then
8 for each child N ′ of N do
9 if q.T ⊆ N ′.T then

10 insert N ′ in heap with mindist(q, N ′);

11 if N is a leaf node of IVIP-tree then
12 for each partition Pi in N do
13 Ri ← root node of KP-Tree of Pi;
14 if q.T ⊆ Ri.T then
15 insert Ri in heap with mindist(q, Ri);

16 if N is a node of KP-Tree then
17 for each child N ′ of N do
18 if c.T ⊆ N ′.T then
19 insert N ′ in heap with mindist(N ′, c);

20 if N is a fruitful node then
21 for each object o associated with it do
22 if q.T ⊆ o.T then
23 insert o in heap with dist(q, o);

24 if N is an object then
25 add the object to kNN and update dk;

6 EXPERIMENTS

All algorithms are implemented in C++ on a PC with 8GB RAM
and Intel Core I5 CPU running 64-bit Ubuntu. First, we present the
results for shortest distance queries in Section 6.1. Then, in Sec-
tion 6.2, we evaluate the algorithms for spatial keyword queries.
Readers are referred to [25] for the experimental evaluation of
other spatial queries such as shortest path, kNN and range queries.

6.1 Shortest Distance Queries

6.1.1 Experimental Settings

Indoor Space. We use three real data sets: Melbourne Central
Shopping Center, Menzies library building and Clayton Campus.
Melbourne Central is a major shopping centre in Melbourne and
consists of 297 rooms spread over 7 levels (including ground and
lower ground levels). Menzies building is the tallest building at
Clayton campus of Monash University consisting of 14 levels
(including basement and ground floor) and 1306 rooms. The
Clayton data set corresponds to 71 buildings (including multilevel
car parks) in Clayton campus of Monash University.

To evaluate the algorithms on even larger data sets, we extend
Melbourne Central (denoted as MC), Menzies building (denoted
as Men) and Clayton (denoted as CL) by replication. Table 2 gives
details of the real indoor venues and the larger replicated venues.
For example, MC-2 indicates that a replica of Melbourne Central
is placed on top of the original building. CL-2 denotes that each
building in the Clayton campus has been replicated to increase its
size by two. The replicas are connected with the original buildings
by stairs. The number of edges shown in Table 2 corresponds to
the total number of edges in the D2D graph for each indoor space.
Competitors. We compare our proposed indexes (IP-Tree and
VIP-Tree) with the following competitors.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2: Indoor venues used in experiments

Datasets Description # doors # rooms # edges
MC Melbourne Central 299 297 8,466
MC-2 2 times MC 600 597 16,933
Men Menzies building 1,368 1,306 56,035
Men-2 2 times Men 2,738 2,613 112,114
CL Clayton Campus 41,392 41,100 6,700,272
CL-2 2 times CL 83,138 82,540 13,400,884

Distance Matrix (DistMx). This technique uses a distance matrix
that materializes distances between all pairs of doors requiring
O(D2) space.
Distance-aware model (DistAw) [19]. Distance-aware is the state-
of-the-art indoor query processing index which uses an extended
graph based on the accessibility base graph.
ROAD [16] and G-tree [37]. We also compare our algorithms
with the state-of-the-art indexes for spatial query processing on
road networks (G-tree and ROAD). These indexes are constructed
by passing the D2D graph as input and the query processing
algorithms are adapted to suit indoor query processing. For each
indoor venue, we experimentally choose the best value for the
parameter τ in G-tree.
IP-Tree and VIP-Tree. We evaluate shortest distance algorithms
using both IP-Tree and VIP-Tree. For both indexes, we experi-
mentally choose the value of minimum degree t (see Algorithm 1)
and find that the best performance is achieved for t = 2. Although
the results are not shown due to the space limitations, we also
found that the average number of access doors is less than 4 for
all data sets and the maximum number of access doors is around 8.
This provides an insight on why our indexes perform exceptionally
well for indoor spaces.

6.1.2 Query Performance
Fig. 10a compares the performance of all techniques for shortest
distance queries. 10, 000 pairs of source and target points are
randomly generated in the indoor space. The results show the
average cost for a single shortest distance query. Since DistMx
returns distance between any two doors in the graph in O(1), it
gives the best performance. However, VIP-Tree provides a compa-
rable performance despite its significantly smaller index size. VIP-
Tree significantly outperforms IP-Tree at the expense of a slightly
higher indexing cost. Both VIP-Tree and IP-Tree outperform the
other three techniques by several orders of magnitude, e.g., for
CL-2 data set, VIP-Tree processes a shortest distance query in
around 10 microseconds as compared to ROAD and G-tree that
take almost one second to answer a single shortest path query.

100
101
102
103
104
105
106
107
108
109

MC MC-2 Men Men-2 CL CL-2

Q
u

er
y

ti
m

e
(µ

s)

VIP-Tree
IP-Tree
DistAw
DistMx
G-Tree
ROAD

(a) Different indoor datasets

100
101
102
103
104
105
106
107
108
109

Q1 Q2 Q3 Q4 Q5

Q
u

er
y

ti
m

e
(µ

s)

VIP-Tree
IP-Tree
DistAw

DistMx
G-Tree
ROAD

(b) Effect of distance b/w s and t

Fig. 10: Shortest Distance Queries
Next, we evaluate the effect of the distance between s and

t on the performance of different algorithms. We use Men-2 to
demonstrate the results because this is the largest data set for
which DistMx can be built. Let dmax be the maximum distance
between any two points in Men-2 building. We divide the distance
range [0, dmax] into five intervals (Q1 to Q5) of equal length
l = dmax/5, e.g., Q1 = [0, l], Q2 = [l, 2l], . . . , Q5 = [4l, 5l].
We then randomly generate source and target points and allocate

them to relevant Qi based on the distances between them. Hence,
the pairs of source and target points corresponding to Q1 have the
smallest distances (within range [0, l]) and the pairs in Q5 have
largest distances [4l, 5l].

Fig. 10b shows the effect of distances on the performance of
different algorithms. The cost of DistAw increases by almost two
orders of magnitude as the distance increases. The cost for IP-
Tree slightly increases from Q1 to Q3 because the lowest common
ancestor is at a higher level when source and target are further from
each other. This requires visiting more levels of the tree resulting
in an increased cost. However, the cost does not increase further
for Q4 and Q5 because, in most of the cases for Q3, the lowest
common ancestor is already the root node. A similar behavior
can be observed for G-tree and ROAD. The effect of distance
is negligible on DistMx and VIP-Tree because these algorithms
require retrieving relevant entries from the distance matrices which
is independent on the distances between the source and target
points.

6.2 Indoor Boolean kNN Spatial Keword Queries
6.2.1 Experimental Settings
Indoor Venue and Keyword Datasets. We use Chadstone Shop-
ping Centre as the indoor venue. Chadstone Shopping Centre is
the largest shopping centre in Australia with total retail floor area
over 200, 000m2 and consists of around 530 stores across 4 levels.
We obtained the floor plans of Chadstone Shopping Centre and
manually converted them to machine readable indoor venues. To
get the object datasets, we choose 11 stores (2 technology stores,
2 supermarkets, 3 home accessories stores, 2 pharmacies and 2
liquor stores) and extract the keywords related to the products
from their websites. The details for the object sets for each store
are shown in Table 3.

TABLE 3: Details of Stores

Category Store Name # unique
products

unique
keywords

Technology EBGames (EB) 12,848 8,432
JB Hi-Fi (JB) 28,980 22,551

Supermarket Woolworths (WO) 11,632 8,641
Coles (CO) 19,079 9,991

Home Ac-
cessaries

Target (TA) 5,866 5,285
Harris Scarf (HA) 5,307 6,793
BigW (BI) 21,682 16,329

Liquor Liquorland (LI) 1,397 1,382
Dan Murphy’s (DA) 14,364 9,586

Pharmacy Amcal (AM) 7,603 5,573
Chemist Warehouse
(CH) 11,141 7,707

We use these stores to obtain several real world object data
sets. Table 4 gives the details of the object data sets. The capital
letters denote the category of stores used in the data set. For
example, the data set TS refers to the data set that contains
all Technology stores (i.e., EB Games and JB Hi-Fi) and all
Supermarkets (i.e., Coles and Woolworths). The default data set,
TSHLP, is the biggest data set containing all types of stores and
consists of around 140, 000 unique products (i.e., objects) across
11 different stores.

TABLE 4: Details of keyword datasets

Dataset Vocabulary size # products
TS 35,803 72,539
TSH 50,056 105,394
TSHLP 60,014 139,899

To evaluate our algorithms on larger indoor venues, we use
Monash University Clayton Campus as the indoor venue and, for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

103

104

105

1 2 3 4 5 6 7

Q
u

er
y

ti
m

e
(µ

s)

of Keywords

IVIP+KP
DistAw

IVIP-Tree

G-tree
DistAw++

(a) Chadstone

103

104

105

106

107

108

1 2 3 4 5 6 7

Q
u

er
y

ti
m

e
(µ

s)

of Keywords

IVIP+KP
DistAw

IVIP-Tree
G-tree

(b) Clayton

Fig. 11: Effect of # keywords

103

104

105

1 5 10

Q
u

er
y

ti
m

e
(µ

s)

k

IVIP+KP
DistAw

IVIP-Tree

G-tree
DistAw++

(a) Chadstone

104

105

106

107

108

1 5 10

Q
u

er
y

ti
m

e
(µ

s)

k

IVIP+KP
DistAw

IVIP-tree
G-tree

(b) Clayton

Fig. 12: Effect of k

each of the object datasets in Table 4, the stores are allocated to
different indoor partitions in the indoor venues in Clayton campus.
Queries. Queries are generated using the same approach as in [7].
Specifically, we first randomly choose an object from the dataset
and treat its location as the query location. Then, we randomly
choose a specified number of words from the object as the query
keywords. If the total number of objects that contain these query
keywords is less than 10, we ignore this query and repeat the
process by randomly choosing another object and keywords from
it. This is to ensure that each iBkNN-SK query returns at least k
objects. The value of k varies from 1 to 10 with the default value
set to be 5. The default objects dataset is TSHLP and the default
number of keywords is set to be 3. For each experiment, we run
100 queries generated as described above and report the average
query processing cost.

The indoor spatial keyword query processing techniques rely
on two types of indexes: a venue-level index (e.g., IVIP-Tree) that
contains keyword summaries at each node and allows efficient
pruning of irrelevant areas of the indoor venue; and a partition-
specific index (e.g., KP-Tree) which is built for each indoor
partition containing objects and allows efficiently obtaining the
relevant objects in the partition. We evaluate our venue-level index
and partition-specific index separately to clearly demonstrate the
improvement made by each index. Specifically, in Section 6.2.2,
we demonstrate superiority of IVIP-Tree compared to other venue-
level indexes assuming that all indexes use the same partition-
specific indexes. Then, in Section 6.2.3, we compare our partition-
specific index, KP-Tree, with other partition-specific indexes as-
suming that all techniques use the same venue-level index (IVIP-
Tree).

6.2.2 Evaluating Venue-Level Indexes
Competitors. In this section, we compare the following venue-
level indexing techniques assuming that each index including
IVIP-Tree indexes the objects in each indoor partition using
inverted lists.
DistAw [19]. As described before, DistAw utilizes the AB graph
of the indoor venue and keywords information is embedded for
each partition.
DistAw++. This is the same as DistAw except that, to accelerate
distance computations, a distance matrix is used to compute the
distances between any two doors in the indoor venue.

103

104

105

TS TSH TSHLP

Q
u

er
y

ti
m

e
(µ

s)

Datasets

IVIP+KP
DistAw

IVIP-Tree

G-tree
DistAw++

(a) Chadstone

104

105

106

107

108

TS TSH TSHLP

Q
u

er
y

ti
m

e
(µ

s)

Datasets

IVIP+KP
DistAw

IVIP-Tree
G-tree

(b) Clayton

Fig. 13: Effect of object data sets

G-tree [36]. We also compare our algorithm with the state-of-
the-art technique for query processing in road network (G-tree).
G-tree is built on the D2D graph converted from the indoor venue.
G-tree is extended to handle spatial keyword queries by storing
summaries of keywords with each node.
IVIP-Tree IVIP-Tree is our venue-level index which, like other
competitors discussed above, uses inverted lists for each indoor
partition.
IVIP-Tree +KP-Tree We also show the performance of IVIP-Tree
when it uses KP-Tree to index the objects in each partition. This
is shown as IVIP+KP in the figures.

We do not show the results for the construction cost of the
venue-level indexes because these are similar to the construction
cost shown for spatial queries in the previous section.
Results. Fig. 11, 12 and 13 show the experimental results for
different number of keywords, varying k and different object
data sets for both indoor venues: Chadstone Shopping Center
and Monash University Clayton Campus. Our venue-level index,
IVIP-Tree, significantly outperforms other venue level indexes.
When KP-Tree is used for indexing the objects in every partition
(i.e., IVIP+KP), our technique outperforms all other methods by
at least one order of magnitude. This shows the effectiveness
of our venue-level index IVIP-Tree as well as our partition-
specific index KP-Tree. Note that DistAw++ is only available for
smaller indoor venues due to the O(D2) construction time and
storage requirement for the distance matrix. Therefore, results for
DistAw++ are not shown for the Clayton data set.

Fig. 11a shows that the querying cost of our techniques
increases when the number of keywords is increased from 1
to 4 and the cost decreases when the number of keywords is
further increased from 4 to 7. This is because, as the number
of keyword increases, more nodes of indexes can be pruned as
fewer nodes contain all query keywords. On the other hand, the
distance between query to the objects satisfying keyword criteria
also increases resulting in an increased cost. Similar behavior
was reported in [7] for some spatial keyword query processing
techniques in Euclidean space.

6.2.3 Evaluating Partition-Specific Indexes
Partition-specific indexes. To evaluate partition-specific indexes,
we use IVIP-Tree to index the indoor venue and each competitor
uses, for each indoor partition, a certain partition-specific index
to index the objects in it. Specifically, we compare KP-Tree
with Inverted Lists (IL), IR-tree [8] and WIR-tree [29]. For each
approach, we experimentally determined the best values of the
parameters used in the index. For KP-Tree, the fanout f is chosen
to be 64 and α is set to 32.
Indexing cost. Fig. 14 compares the construction time and
index size for each indexing technique for different stores in our
data sets (see Table 3 for the details of each abbreviation). The
stores on x-axis are listed in increasing order of the total number
of unique products in each store. As expected, inverted lists
can be constructed significantly more efficiently as compared to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

100

102

104

LI HA TA AM CH WO EB DA CO BI JB

In
d

ex
in

g
 t

im
e

(m
s)

IR-tree WIR-tree KP-Tree IL

(a) Construction time

101

102

103

104

LI HA TA AM CH WO DA EB BI CO JB

In
d

ex
in

g
 s

iz
e

(K
B

)

IR-tree WIR-tree KP-Tree IL

(b) Index size

Fig. 14: Indexing Cost

103

104

105

1 2 3 4 5 6 7

Q
u

er
y

ti
m

e
(µ

s)

of Keywords

KP-Tree
IL

IR-tree
WIR-tree

(a) Chadstone

104

105

1 2 3 4 5 6 7

Q
u

er
y

ti
m

e
(µ

s)

of Keywords

KP-Tree
IL

IR-tree
WIR-tree

(b) Clayton

Fig. 15: Effect of # keywords

103

104

1 5 10

Q
u

er
y

ti
m

e
(µ

s)

k

KP-Tree
IL

IR-tree
WIR-tree

(a) Chadstone

104

105

1 5 10

Q
u

er
y

ti
m

e
(µ

s)

k

KP-Tree
IL

IR-tree
WIR-tree

(b) Clayton

Fig. 16: Effect of k

other approaches because the construction cost mainly consists of
sorting each list based on distances of the objects from each door
in the partition The index size of inverted list is also the smallest.
The construction time and index size of KP-tree is comparable
with other approaches although a little higher. For the biggest
store (JB HiFi) containing around 30, 000 unique products, KP-
tree is constructed in about 4 seconds and the index size is around
5 MB.
Handling object updates. We use three largest data sets in terms
of the number of unique products and keywords (Coles, BigW and
JB Hi-Fi). To generate a location update (resp. object deletion),
we randomly choose an object and assign it a new randomly
chosen location in the partition (resp. delete the randomly chosen
object). For object insertion, we initially create a KP-Tree with
90% of randomly chosen objects in the data set. Then, we insert
the remaining 10% objects in it one by one. Table 5 reports the
throughput (number of updates that can be handled per second) for
each type of update. As expected, location update is the cheapest to
handle whereas the object insertion takes more time as it requires
finding an appropriate location to insert the object. Note that the
number of updates in the real-world applications is typically small
and the results show that our techniques can easily handle up to
several thousand updates per second.

TABLE 5: Throughput (# of updates handled per second)

Coles BigW JB Hi-Fi
Location changes 96, 711 75, 244 44, 802
Object deletions 56, 561 39, 808 27, 344
Object insertions 6, 126 5, 175 4, 126

103

104

TS TSH TSHLP

Q
u

er
y

ti
m

e
(µ

s)

Datasets

KP-Tree
IL

IR-tree
WIR-tree

(a) Chadstone

104

105

TS TSH TSHLP

Q
u

er
y

ti
m

e
(µ

s)

Datasets

KP-Tree
IL

IR-tree
WIR-tree

(b) Clayton

Fig. 17: Effect of object sets

Querying cost. Fig. 15, 16 and 17 show the querying cost of each
approach for different number of keywords, varying k and differ-
ent object data sets for both indoor venues: Chadstone Shopping
Center and Monash University Clayton Campus. Our proposed
partition-specific index, KP-tree, significantly outperforms other
partition-specific approaches for all data sets and settings.

Fig. 15 shows the effect of number of keywords on all
algorithms. As anticipated, inverted lists (IL) give the best per-
formance when the query consists of only one keyword. This
is because it requires only checking one list which is already
sorted on distances. However, the performance of IL significantly
deteriorates as the number of query keywords increases. The cost
of tree based indexes first increases with the increase in number
of keywords and then decreases as the number of keywords is
further increased. As explained earlier, this is because the number
of nodes that can be pruned increases with the increase in number
of keywords but, at the same time, the distances to the k nearest
neighbors also increases which requires accessing more nodes of
the indexes.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we propose two novel indoor indexes, IP-Tree
and VIP-Tree, for efficiently processing shortest distance queries.
IP-Tree and VIP-Tree have low storage requirement, small pre-
processing cost and are highly efficient. Our extensive experimen-
tal study on real and synthetic data sets demonstrates that the
proposed indexes outperform the existing techniques by several or-
ders of magnitude. For spatial keyword queries, we extended VIP-
Tree by embedding keyword information on each node. We also
proposed a partition-specific index called KP-Tree that indexes
the objects for each indoor partition. The experimental studies
demonstrate that our proposed indexes significantly outperform
the competitors. An important direction for future work is to
study spatial keyword queries considering similarity to the query
keywords as well as synonyms and product categories.
Acknowledgments. Muhammad Aamir Cheema is supported by
Australian Research Council FT180100140 and DP180103411.
Hua Lu is partly supported by Independent Research Fund
Denmark (No. 8022-00366B). Shiyu Yang is supported by
NSFC61802127 and Shanghai Sailing Program 18YF1406700.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

REFERENCES

[1] http://www.citygml.org/.
[2] http://www.opengeospatial.org/projects/groups/indoorgmlswg.
[3] T. Abeywickrama, M. A. Cheema, and A. Khan. K-SPIN: Efficiently

processing spatial keyword queries on road networks. IEEE Transactions
on Knowledge and Data Engineering, 2019.

[4] T. Abeywickrama, M. A. Cheema, and D. Taniar. k-nearest neighbors on
road networks: a journey in experimentation and in-memory implemen-
tation. PVLDB, 2016.

[5] M. A. Cheema. Indoor location-based services: challenges and opportu-
nities. SIGSPATIAL Special, 10(2):10–17, 2018.

[6] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li. Continuous
reverse k nearest neighbors queries in euclidean space and in spatial
networks. VLDB J., 21(1):69–95, 2012.

[7] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query
processing: An experimental evaluation. PVLDB.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[9] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pages 656–665, 2008.

[10] A. Hidayat, S. Yang, M. A. Cheema, and D. Taniar. Reverse approximate
nearest neighbor queries. IEEE Trans. Knowl. Data Eng., 30(2):339–352,
2018.

[11] C. S. Jensen, H. Lu, and B. Yang. Indexing the trajectories of moving
objects in symbolic indoor space. In SSTD, 2009.

[12] M. Jiang, A. W. Fu, and R. C. Wong. Exact top-k nearest keyword search
in large networks. In ACM SIGMOD, pages 393–404, 2015.

[13] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In
Supercomputing, 1995.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 1998.

[15] J. Lee. A spatial access-oriented implementation of a 3-d gis topological
data model for urban entities. GeoInformatica, 2004.

[16] K. C. K. Lee, W. Lee, B. Zheng, and Y. Tian. ROAD: A new spatial
object search framework for road networks. IEEE TKDE, 2012.

[17] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao. A reliable and
accurate indoor localization method using phone inertial sensors. In
UbiComp, 2012.

[18] G. Li, J. Feng, and J. Xu. DESKS: direction-aware spatial keyword
search. In IEEE ICDE, pages 474–485, 2012.

[19] H. Lu, X. Cao, and C. S. Jensen. A foundation for efficient indoor
distance-aware query processing. In ICDE, 2012.

[20] H. Lu, B. Yang, and C. S. Jensen. Spatio-temporal joins on symbolic
indoor tracking data. In ICDE, 2011.

[21] J. B. Rocha-Junior and K. Nørvg. Top-k spatial keyword queries
on road networks. In 15th International Conference on Extending
Database Technology, EDBT ’12, Berlin, Germany, March 27-30, 2012,
Proceedings, pages 168–179, 2012.

[22] S. B. Roy and K. Chakrabarti. Location-aware type ahead search on
spatial databases: semantics and efficiency. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011, pages 361–372, 2011.

[23] C. Salgado, M. A. Cheema, and D. Taniar. An efficient approximation
algorithm for multi-criteria indoor route planning queries. In Proceedings
of the 26th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL 2018, Seattle, WA, USA,
November 06-09, 2018, pages 448–451, 2018.

[24] Z. Shao, M. A. Cheema, and D. Taniar. Trip planning queries in indoor
venues. The Computer Journal, pages 1–18, 2017.

[25] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu. VIP-Tree: An effective
index for indoor spatial queries. PVLDB, 10(4):325–336, 2016.

[26] Z. Shao and D. Taniar. Enhanced range search with objects outside query
range. World Wide Web, 18(6):1631–1653, 2015.

[27] Z. Shao, D. Taniar, and K. M. Adhinugraha. Voronoi-based range-knn
search with map grid in a mobile environment. Future Generation Comp.
Syst., 67:305–314, 2017.

[28] D. Wu, G. Cong, and C. S. Jensen. A framework for efficient spatial web
object retrieval. VLDB J., 21(6):797–822, 2012.

[29] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k spatial keyword
query processing. IEEE Trans. Knowl. Data Eng., 24(10):1889–1903,
2012.

[30] X. Xie, H. Lu, and T. B. Pedersen. Efficient distance-aware query
evaluation on indoor moving objects. In ICDE, 2013.

[31] X. Xie, H. Lu, and T. B. Pedersen. Distance-aware join for indoor moving
objects. IEEE TKDE, 2015.

[32] B. Yang, H. Lu, and C. S. Jensen. Scalable continuous range monitoring
of moving objects in symbolic indoor space. In CIKM, 2009.

[33] B. Yang, H. Lu, and C. S. Jensen. Probabilistic threshold k nearest
neighbor queries over moving objects in symbolic indoor space. In
EDBT, 2010.

[34] S. Yang, M. A. Cheema, X. Lin, Y. Zhang, and W. Zhang. Reverse k
nearest neighbors queries and spatial reverse top-k queries. VLDB J.,
26(2):151–176, 2017.

[35] W. Yuan and M. Schneider. Supporting continuous range queries in
indoor space. In MDM, 2010.

[36] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong. G-tree: An efficient
and scalable index for spatial search on road networks. IEEE TKDE,
27(8):2175–2189, Aug 2015.

[37] R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index for
knn search on road networks. In CIKM, 2013.

[38] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In CIKM, 2005.

Zhou Shao is a Teaching Associate at Faculty
of Information Technology, Monash University,
Australia. He Obtained his PhD from Monash
University Australia in 2018. He received his
Master degree in Monash University Australia in
2014 and Bachelor degree in Nanjing University
of Aeronautics and Astronautics in 2012 both in
Information Technology. His research interests
include spatial database, especially in indoor
data management.

Muhammad Aamir Cheema is an Associate
Professor at Faculty of Information Technology,
Monash University, Australia. He obtained his
PhD from UNSW Australia in 2011. He is the
recipient of 2012 Malcolm Chaikin Prize for Re-
search Excellence in Engineering, 2013 Dis-
covery Early Career Researcher Award, 2014
Dean’s Award for Excellence in Research by
an Early Career Researcher, 2018 Future Fel-
lowship, 2018 MSA Teaching Award and 2019
Young Tall Poppy Science Award. He has won

two CiSRA best research paper of the year awards, two invited papers
in the special issue of IEEE TKDE on the best papers of ICDE (2010
and 2012), and two best paper awards at WISE 2013 and ADC 2010,
respectively. He is a senior member of the IEEE.

David Taniar received BSc, MSc, and PhD, all
in Computer Science, specialising in Databases.
His research is mainly in parallel database, and
spatial/mobile query processing. He has pub-
lished extensively in these areas, including a
book in High Performance Parallel Database
Processing (Wiley, 2008). He is the Founding
Editor in-Chief of two SCIE journals (Data Ware-
housing and Mining, and Web and Grid Ser-
vices). He is currently an Associate Professor at
the Faculty of Information Technology, Monash

University.

Hua Lu is a professor MSO in the Department
of Computer Science, Aalborg University, Den-
mark. He received the BSc and MSc degrees
from Peking University, China, and the PhD de-
gree in computer science from National Univer-
sity of Singapore. His research interests include
data management, geographic information sys-
tems, and mobile computing. He has served as
PC co-chair or vice chair for NDBC 2019, MDM
2012, ISA 2011 and MUE 2011, PhD forum
cochair for MDM 2016, and demo chair for SS-

DBM 2014. He has served on the program committees for conferences
such as VLDB, ICDE, KDD, WWW, CIKM, DASFAA, ACM SIGSPATIAL,
SSTD, MDM, PAKDD and APWeb. He is a senior member of the IEEE.

Shiyu Yang is an Associate Professor at School
of Software Engineering, East China Normal
University. He received the BS and MS degrees
from the Dalian University of Technology, China,
and the PhD degree from the University of New
South Wales, Australia. His research interests in-
clude spatial databases and location-based ser-
vices. He has published papers in conferences
and journals including ICDE, PVLDB and VLDB
Journal.

