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Abstract
Video games feature a dynamic environment where1

locations of objects (e.g., characters, equipment,2

weapons, vehicles etc.) frequently change within3

the game world. Although searching for relevant4

nearby objects in such a dynamic setting is a fun-5

damental operation, this problem has received lit-6

tle research attention. In this paper, we propose a7

simple lightweight index, called Grid Tree, to store8

objects and their associated textual data. Our in-9

dex can be efficiently updated with the underly-10

ing updates such as object movements, and sup-11

ports a variety of object search queries, including12

k nearest neighbors (returning the k closest ob-13

jects), keyword k nearest neighbors (returning the14

k closest objects that satisfy query keywords), and15

several other variants. Our extensive experimen-16

tal study, conducted on standard game maps bench-17

marks and real-world keywords, demonstrates that18

our approach has up to 2 orders of magnitude faster19

update times for moving objects compared to state-20

of-the-art approaches such as navigation mesh and21

IR-tree. At the same time, query performance of22

our approach is similar to or better than that of IR-23

tree and up to two orders of magnitude faster than24

the other competitor.25

1 Introduction26

Video games offer a virtual environment in which players in-27

teract with a variety of objects such as game characters, units,28

vehicles, equipment, weapons and other types of items. These29

objects can be moving, changing, appearing or disappearing,30

creating a dynamic and ever-evolving game world. This dy-31

namic nature of games poses a unique challenge for efficient32

object search – searching for relevant nearby objects – in the33

game world. Object search is a crucial operation in video34

games, enabling players to navigate the game world, inter-35

act with objects, and complete tasks. It is also used by game36

engines in various contexts, including game AI, physics sim-37

ulation, scripting, inventory management, quest tracking, and38

object tracking. For instance, the game AI employs object39

search to locate nearby enemies, allies, weapons, and other40

objects relevant to their locations and actions.41

While finding shortest path/distance between two points in 42

a game map, which is represented as a Euclidean plane con- 43

taining polygonal obstacles, has been very well studied [Yap 44

et al., 2011; Shen et al., 2020; Nash et al., 2007], object 45

search has received little research attention despite its practi- 46

cal significance. There exists some works [Zhao et al., 2018b] 47

on finding k closest objects in game maps, called k near- 48

est neighbors (kNN), but most of the existing techniques are 49

not designed for the dynamic game environments. Searching 50

for relevant nearby objects in dynamic game environments is 51

challenging as it requires efficiently handling real-time ob- 52

ject updates while maintaining fast query performance. Ad- 53

ditionally, in many practical applications, it is important to 54

find nearby objects that match a specific textual description, 55

e.g., finding the nearest “healing unit”. In such scenarios, 56

simply identifying the closest objects without considering 57

whether they match the required textual description is insuf- 58

ficient. While our focus in this paper is on game maps, there 59

are many applications of the problem we study in this pa- 60

per beyond game maps such as in indoor location-based ser- 61

vices [Cheema, 2018], home assistant technologies [Luria et 62

al., 2016; Umair et al., 2021], automated warehouses [Custo- 63

dio and Machado, 2020], asset tracking [Krishnan and Men- 64

doza Santos, 2021] etc. 65

To the best of our knowledge, we are the first to study such 66

textual object search in dynamic game environments. Specif- 67

ically, we study keyword kNN queries that find the k closest 68

objects that satisfy the query keywords. The state-of-the-art 69

algorithms for traditional kNN queries are: Incremental Eu- 70

clidean Restriction(IER)-Polyanya [Zhao et al., 2018a]; and 71

Interval Heuristic (IH) [Zhao et al., 2018b]. Although both 72

IER-Polyanya and IH can be extended to answer keyword 73

kNN queries (see Section 3.2), they either suffer from poor 74

query performance or inefficient update handling. Specifi- 75

cally, IER-Polyanya utilises R-tree for efficient object search 76

but suffers from poor update handling because R-tree is not 77

well-suited for dynamic environments. In contrast, IH em- 78

ploys navigation mesh which can be efficiently updated but 79

suffers from poor query performance especially when the re- 80

sult objects are not close to the query. 81

Given the limitations of IER-Polyanya and IH, there is a 82

need to design an effective index that can be efficiently up- 83

dated in highly dynamic environments such as game maps 84

and, at the same time, allows efficient query processing. To 85



this end, we present a simple lightweight index, called Grid86

Tree, which cannot only efficiently handle object updates but87

also allows efficiently processing keyword kNN queries and88

several variants. We evaluate our approach using widely used89

game benchmarks [Sturtevant, 2012] and realistic keyword90

datasets for these games. We compare our approach with91

IER-Polyanya, IH, and IER-EHL (a faster version of IER-92

Polyanya), and show that our approach achieves the best of93

both worlds. Specifically, it can handle object updates by94

up to 2 orders of magnitude faster than IER-Polyanya and95

IER-EHL, and its update cost is comparable to IH (specifi-96

cally, faster for object movements and slower for object in-97

sertions/deletions). At the same time, its query performance98

is comparable to IER-EHL, several times faster than IER-99

Polyanya, and up to two orders of magnitude faster than IH.100

We also discuss how our approach can efficiently answer sev-101

eral other variants of textual object search queries.102

2 Preliminaries103

We consider a Euclidean plane containing a set of obstacles,104

each represented as a polygon. Two points in the plane are105

visible to each other (i.e., co-visible) iff there exists a straight106

line connecting them that does not pass through any obsta-107

cle. A path P between two points x and y is an ordered set108

of points ⟨p1,p2, · · · , pn⟩ where p1 = x, pn = y and every109

successive pair of points pi and pi+1 (i < n) is co-visible.110

The length of a path P is the cumulative Euclidean distance111

between the successive pairs of points, denoted as |P|, i.e.,112

|P| =
∑n−1

i=1 Edist(pi, pi+1) where Edist(pi, pi+1) is the113

Euclidean distance between pi and pi+1. A path P is a short-114

est path, denoted as sp(x, y), if there is no other path between115

x and y shorter than P . We use d(x, y) to denote the length116

of the shortest path, i.e., d(x, y) = |sp(x, y)|.117

We consider a set of objects O in the traversable (i.e.,118

non-obstacle) area of the Euclidean plane. Each object119

oi ∈ O is represented as a tuple (oi.ρ, oi.τ) where oi.ρ120

is a two-dimensional point representing location of oi in121

the Euclidean plane and oi.τ is its textual description rep-122

resented as a set of keywords. Similar to many existing123

works in dynamic environments [Mouratidis et al., 2005;124

Hidayat et al., 2022], we consider a timestamp model where125

the time domain is discretised into a set of timestamps T . The126

set of objects O may change between two consecutive times-127

tamps if new objects are added to O or some existing objects128

are deleted. We use Ot to denote the set of objects at a times-129

tamp t ∈ T . Similarly, location and/or textual description130

of an object oi may change and we use oti = (oti.ρ, o
t
i.τ) to131

represent an object oti ∈ Ot at a timestamp t ∈ T .132

A query q is also a tuple (q.ρ, q.τ) representing its loca-133

tion and query keywords. There are many variants of textual134

object search but, in this work, our main focus is on boolean135

kNN query [Chen et al., 2013] which is one of the most pop-136

ular keyword queries.137

Definition 1. boolean kNN Query: Given a query q =138

(q.ρ, q.τ) issued at timestamp t and the set of objects Ot, find139

up to k objects closest from the query location q.ρ among140

the objects that contain all query keywords q.τ . Formally,141

the result set of the query R contains up to k objects from142

Ot such that ∀oti ∈ R: q.τ ⊆ oti.τ and ∄otj ∈ Ot \ R: 143

d(q.ρ, otj .ρ) < d(q.ρ, oti.ρ) ∧ q.τ ⊆ otj .τ . 144

Example 1. Figure 1 shows a game map where black poly- 145

gons represent obstacles (i.e., non-traversable area). The 146

maps contains six objects o1 to o6 along with their associated 147

textual description, e.g., o1.τ = {w, x}. Consider a boolean 148

1NN query q shown on the map with q.τ = {x, y}. The ob- 149

jects o2, o3 and o6 are the candidate objects (shown in green 150

filled circles) as each of these contains both of the query key- 151

words x and y. However, o2 is the closest object among these 152

from q considering the obstacle-avoiding distance. Thus, the 153

result for query q is o2. 154

In Section 4.4, we discuss how our approach can be used 155

to answer several variants of this query. Also, note that a 156

traditional kNN query is a special case of boolean keyword 157

kNN query when there is no query keyword, i.e., q.τ = ∅. 158

3 Related Work 159

3.1 Pathfinding in Game Maps 160

Pathfinding in game maps, finding shortest path between two 161

locations, has been extensively studied, e.g., see [Demyen 162

and Buro, 2006; Oh and Leong, 2017; Uras and Koenig, 163

2015; Shen et al., 2022] and references therein. Next, we 164

briefly discuss two state-of-the-art algorithms most relevant 165

to this work. 166

Polyanya [Cui et al., 2017] is an efficient online pathfinding 167

algorithm. The algorithm employs a navigation mesh [Kall- 168

mann and Kapadia, 2014] which divides the traversable area 169

into a set of convex polygons. Polyanya instantiates a search 170

similar to A* algorithm and treats polygon edges of the navi- 171

gation mesh as search nodes. It iteratively expands the edges 172

according to heuristic values considering their distances from 173

source and target. When the search accesses the polygon con- 174

taining target, the target is also added in the queue as a search 175

node. The algorithm terminates when the target is expanded. 176

Euclidean Hub Labeling (EHL) [Du et al., 2023] is the 177

state-of-the-art pathfinding algorithm. It employs hub label- 178

ing [Abraham et al., 2011] which is a highly efficient ap- 179

proach to compute shortest paths/distances in graphs. In the 180

preprocessing phase, EHL computes hub labels on the vis- 181

ibility graph containing the convex vertices of the map. A 182

uniform grid is superimposed on the map and, for each cell c 183

of the grid, hub labels of the vertices visible from c are copied 184

to the cell c. During query processing, the hub labels of the 185

cells containing source and target are combined to find the 186

common hub nodes and compute the shortest path/distance. 187

3.2 Object Search in Game Maps 188

Object search on geo-textual data has been very well- 189

studied [De Felipe et al., 2008; Cong et al., 2009; Chen et al., 190

2013; Chen et al., 2020; Xu et al., 2022] due to its applica- 191

tions in map-based services. Unfortunately, these techniques 192

are not suitable for game maps which are highly dynamic and 193

are represented differently, as a Euclidean plane containing 194

polygonal obstacles. Next, we briefly discuss two best-known 195

algorithms for computing traditional kNN queries in game 196

maps and their extension for textual object search. 197



Interval Heuristic (IH) [Zhao et al., 2018b] is based on198

Polyanya and replaces the heuristic of the A* search such199

that the search incrementally explores the space like Dijkstra200

search. When the search reaches a polygon that contains an201

object, the object is also added to the queue. The algorithm202

terminates when k objects are expanded. IH can be easily203

extended to answer keyword kNN queries by pruning every204

accessed object that does not satisfy query keywords. Since205

IH employs Polyanya which exploits a navigation mesh, han-206

dling object updates is quite efficient. Specifically, IH re-207

quires maintaining the objects located in each polygon of the208

navigation mesh. Thus, if an object changes its location, the209

object is deleted from its previous polygon and added to its210

new polygon. If the object remains in the same polygon, the211

navigation mesh does not need any update.212

IER-Polyanya [Zhao et al., 2018a] employs an R*-213

tree [Beckmann et al., 1990] and incrementally retrieves near-214

est objects to the query location according to their Euclidean215

distances. For each retrieved object, it calls Polyanya to com-216

pute its actual distance from the query. The algorithm termi-217

nates when the Euclidean distance of the next retrieved object218

is no smaller than the actual distances of kNNs. To handle219

keyword queries, we use IR-tree [Li et al., 2010], a popular220

extension of R*-tree to handle spatio-textual data. While R*-221

tree and IR-tree allow efficient query processing, it is com-222

putationally expensive to update them. For example, the lo-223

cation update is handled by first updating the structure of IR-224

tree in a way similar to how R-tree handles updates. Then,225

the textual information associated with each node is updated226

accordingly. Since the nodes of R*-tree and IR-tree may need227

to be expanded or shrunk with the updates, they are not well-228

suited for highly dynamic environments such as game maps.229

The other two approaches in [Zhao et al., 2018a], Target230

Heuristic (TH) and Fence Heuristic (FH), are not suitable for231

highly dynamic environment and were outperformed by both232

IER-Polyanya and IH in our initial experiments and, there-233

fore, are not discussed/compared against in this paper.234

4 Our Approach235

First, we present the details of our index, called Grid Tree,236

in Section 4.1. Then, in Section 4.2, we discuss how the237

Grid Tree is updated with the changes in the underlying data.238

Section 4.3 presents our query processing algorithm. Finally,239

Section 4.4 discusses how the proposed approach can be eas-240

ily extended to answer a variety of other queries. Our algo-241

rithm relies on a shortest distance computation module which242

is responsible for computing d(x, y) between any two points243

x and y. Although any shortest distance computation algo-244

rithm can be used for this purpose, we employ Euclidean Hub245

Labeling (EHL) [Du et al., 2023] because it is the most effi-246

cient shortest distance computation algorithm. We intention-247

ally keep our index separate from the shortest distance com-248

putation module because it offers flexibility in system design.249

4.1 Grid Tree250

Motivation. Traditional indexes such as R-tree [Guttman,251

1984], R*-tree [Beckmann et al., 1990], kd-tree [Ooi, 1987],252

and Quad-tree [Smith and Chang, 1994] as well as their ex-253
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Figure 1: Boolean keyword kNN query: o2 is the 1NN.

tensions [Chen et al., 2013] to index textual information, al- 254

low efficient query processing for a variety of queries. How- 255

ever, a major limitation of these indexes is that they are not 256

suitable for dynamic environments such as game maps where 257

object updates are frequent. Therefore, we need an index 258

that can be efficiently updated in the dynamic environment 259

and allows efficient query processing. Next, we present the 260

details of a simple, easy-to-implement and effective index, 261

called Grid Tree, that can be efficiently updated and allows 262

efficient query processing. 263

Strucutre of Grid Tree. Root node of the Grid Tree is a min- 264

imum bounding rectangle (MBR) of the whole map. Each 265

node is recursively divided into four equal sized children un- 266

til the size of each child node is smaller than a threshold (to 267

be discussed in experiments). Consider a Grid Tree of height 268

h where the root node is at level 0 and the leaf nodes are at 269

level h. There are 2i × 2i equal-sized nodes at level i of the 270

Grid Tree. The leaf nodes constitute a uniform grid contain- 271

ing 2h×2h equal-sized cells. Hereafter, we use the terms leaf 272

nodes and cells interchangeably to refer to the level h nodes. 273

For each leaf node n, we store an object list containing the 274

IDs of the objects that are located inside n. Additionally, for 275

every node n in the Grid Tree, we store a keyword list. Here- 276

after, when we say “objects inside a node n”, we refer to all 277

the objects that are in the subtree rooted at the node n. The 278

keyword list of the node n contains all unique keywords of 279

the objects inside n along with the frequency of each key- 280

word, e.g., if a keyword κ appears in 5 objects inside n, its 281

frequency is 5. We implement the keyword list as a hash map 282

so that frequency of any keyword can be obtained/updated ef- 283

ficiently. Note that object lists are stored only for leaf nodes 284

whereas keyword lists are stored for all nodes of the tree. 285

Example 2. Figures 1 and 2 show a Grid Tree of height 2. 286

The root node R of the Grid Tree is the MBR covering the 287

whole space. The root node has four equal-sized children N1 288

to N4 shown in solid red lines. Each of these nodes is further 289

subdivided into four children. The leaf nodes at level 2 repre- 290

sent a 4× 4 grid (see cells shown in blue lines). In Figure 1, 291

we refer to each leaf node as Ci,j where i and j correspond to 292

its position along x-axis and y-axis, respectively (see the blue 293
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Figure 2: Grid Tree: Children of N2 to N4 are not shown. Object
Lists and Keyword Lists of some of the nodes are shown.

numbers outside the map), e.g., q is located in the cell/leaf294

node C0,0 and o4 is located in the leaf node C0,2. Figure 2295

shows the structure of Grid Tree as well as the object lists296

and keyword lists for some of the nodes. Since the leaf node297

C1,1 contains o1 and o2, its object list consists of o1 and o2.298

Keyword list of C1,1 contains all keywords present in o1 and299

o2 along with their frequencies, e.g., each of w, y and z ap-300

pears in only one object whereas x appears in both o1 and301

o2. The keyword list of N1 represents the keywords and their302

frequencies for all objects in N1 (i.e., o1, o2 and o3). The303

keyword list of the root represents keywords and frequencies304

of all six objects. For simplicity, Figure 2 shows object lists305

and keyword lists only for some cells and nodes of the tree.306

4.2 Updating Grid Tree307

Now, we explain how the Grid Tree is updated at a times-308

tamp t ∈ T . Although our focus in this paper is on handling309

moving objects, for completeness, we discuss how to insert310

an object, delete an object, and handle the change in the loca-311

tion/text of an object.312

Inserting a new object. To insert a new object oti, we first313

identify the leaf node n that contains the location oti.ρ. Then,314

oti is added to the object list of n. Keyword list of n is also315

updated by incrementing the frequency of each keyword κ ∈316

oti.τ by one. If a keyword does not exist in the keyword list, it317

is added with frequency one. Then, all the ancestor nodes of318

n are iteratively accessed and their keyword lists are updated319

in the same way.320

Deleting an object. To delete an object oti, it is deleted from321

the object list of the node n containing it. The keyword list322

of n is also updated by decrementing the frequency of each323

keyword κ ∈ oti.τ by one. If the frequency of any keyword324

is reduced to zero, it is deleted from the keyword list. The325

keyword lists of all ancestor nodes of n are also updated in326

the same way.327

Handling the location change of an object. Assume that the328

location of an object changes between two timestamps, e.g.,329

ot−1
i .ρ ̸= oti.ρ. We update the Grid Tree at timestamp t as330

follows. We identify the leaf nodes n and n′ that contain the331

locations ot−1
i .ρ and oti.ρ, respectively. If n and n′ are the332

same leaf node, we do not need to update anything. Other- 333

wise, we delete the object from the object list of n and add 334

it to the object list of n′. Keyword lists of n and n′ are also 335

updated accordingly, i.e., by decrementing the frequency of 336

each keyword κ ∈ oti in the keyword list of n and increment- 337

ing it by one in the keyword list of n′. Then, the parent nodes 338

of n and n′ are iteratively accessed and their keyword lists are 339

updated accordingly until a common ancestor of n and n′ is 340

reached. Note that the keyword list of the common ancestor 341

does not need to be updated. 342

Example 3. Consider the example shown in Figures 1 and 2 343

and assume that the object o3 moves from its current cell 344

C0,1 to the cell C1,1. We delete o3 from the object list of 345

C0,1 and add it to the object list of C1,1. The keyword list of 346

C0,1 is updated by decrementing the frequency of each of the 347

keywords x, y and z by one and, consequently, the keyword 348

list of C0,1 becomes empty. Then, the keyword list of C1,1 349

is updated by incrementing the frequencies of x, y and z by 350

one each. As a result, the keyword list of C1,1 is updated to 351

{w : 1, x : 3, y : 2, z : 2}. Next, we access the parent nodes 352

of the two cells C0,1 and C1,1. Since both have the same par- 353

ent N1, the keyword list of N1 does not need to be updated. 354

Handling textual change of an object. Assume that textual 355

description of an object changes between two timestamps. 356

For each deleted keyword κ (i.e., κ ∈ ot−1
i .τ ∧ κ /∈ oti.τ ), 357

we update the keyword list of the leaf node n containing oti.ρ 358

by decrementing the frequency of κ by one. For each newly 359

added keyword κ′ (i.e., κ′ /∈ ot−1
i .τ ∧ κ′ ∈ oti.τ ), we update 360

the keyword list of n by incrementing the frequency of κ′ by 361

one. Keyword lists of all ancestors of n are also updated. 362

If both the location and the textual description of an object 363

change between two timestamps, we delete the object ot−1
i 364

and insert oti as discussed earlier. 365

Complexity Analysis. Here, we provide complexity analysis 366

for handling the updates mentioned above. A key operation 367

for handling the updates is to identify the leaf node of the Grid 368

Tree that contains a particular location. This can be done in 369

O(1) because the leaf nodes correspond to a grid of 2h × 2h 370

equal-sized cells where h is the height of the tree. The object 371

insertion and deletion in the object list of a cell can also be 372

done in O(1). Specifically, the object list of each cell is im- 373

plemented as a linked list. Furthermore, we maintain a global 374

object array containing all objects indexed by their IDs. For 375

each object oti, this array stores a pointer to the place of oti in 376

the object list of the cell containing it. This allows deleting 377

an object from the object list in O(1). A new object is always 378

inserted at the end of the object list and its place in this object 379

list is reflected in the global object array. Keyword lists are 380

implemented as hash tables. Although the worst-case com- 381

plexity is linear to the number of keywords, on average, the 382

cost is O(1). Consider an update involving K keywords, the 383

average cost of updating the keyword list is O(K). For all of 384

the updates mentioned above, we need to update at most O(h) 385

nodes. Therefore, the total cost for each update operation is 386

O(Kh) on average. 387

We remark that while the cost of handling location change 388

of an object is O(Kh) in general, the cost when the object 389

moves within the same leaf node is O(1). This is because, in 390



Algorithm 1: Boolean kNN query processing
Input: q.ρ, q.τ, k: query location, query keywords and k
Output: R: query results

1 R = ϕ; dk= ∞;
2 Initialise a min-heap H with the root node of Grid Tree ;
3 while H ̸= ϕ do
4 deheap an entry e from H ;
5 if e.key ≥ dk then
6 return R;
7 if e is an object then
8 compute d(q.ρ, e.ρ);
9 if d(q.ρ, e.ρ) < dk then

10 update R and dk by object e;
11 else if e is a leaf node then
12 for each object oti in the object list of e do
13 if q.τ ⊆ oti.τ then
14 insert oti in H with key

mindist(q.ρ, oti.ρ);
15 else
16 for each child node c of e do
17 if c contains all query keywords q.τ then
18 insert c in H with key mindist(q.ρ, c);

19 return R;

this case, we do not need to update the object list and keyword391

list of any node. This enables our proposed index to handle392

moving objects very efficiently. Traditional indexes such as393

R-tree, Quad-tree and kd-tree cannot handle moving objects394

in O(1).395

4.3 Query Processing396

Algorithm 1 shows the details of our algorithm to compute397

boolean kNNs of a query using the Grid Tree. The algo-398

rithm initialises the result set R to be empty and dk to infinity399

(line 1) where dk is the distance of the kth closest object in400

R. A min-heap H is initialised by inserting the root node of401

the Grid Tree (line 2) with key set to zero. The key of an en-402

try e (denoted as e.key) inserted in the heap is a lower bound403

distance from q.ρ to the entry e (e.g., minimum Euclidean dis-404

tance from q.ρ to the node e). In each iteration, the algorithm405

de-heaps an entry e from the heap. If e.key is at least equal406

to dk, the algorithm terminates by returning the result set R407

(line 6). This is because all remaining entries have distances408

from the query at least equal to dk and, therefore, cannot con-409

tain an object closer to the query than the kth closest object.410

If the de-heaped entry e is an object, its distance from411

the query d(q.ρ, e.ρ) is computed (line 8). This distance412

can be computed using any of the existing pathfinding algo-413

rithms. In our implementation, we use Euclidean Hub La-414

beling (EHL) [Du et al., 2023] which is the state-of-the-art415

shortest path computation algorithm in game maps. If this416

distance is smaller than dk, the result set R and dk are up-417

dated accordingly (line 10). Specifically, we implement R418

as a max-heap with keys set to distances between the query419

and the objects stored in R. We insert e in R and ensure that420

R contains at most k objects after each iteration. If after in-421

serting e, R contains more than k objects, the object with the422

largest distance (i.e., the top entry in the max-heap) is deleted423

from R. If R contains less than k objects, dk is kept to be 424

infinity. Otherwise, dk is set to the distance of the kth closest 425

object in R (i.e., the key of the top entry in the max-heap). 426

If the de-heaped entry e is a leaf node of the Grid Tree, we 427

process the objects in its object list (line 12) and insert each 428

object oti that contains all query keywords in the min-heap H 429

(lines 13 and 14). The key of each object inserted in the min- 430

heap is a lower bound distance between the query and the 431

object locations. In our implementation, we use Euclidean 432

distance between q.ρ and oti.ρ as the lower bound distance. 433

Finally, if e is a non-leaf node of the Grid Tree, we process 434

each child node c of e as follows. First, we check if c contains 435

all query keywords or not (line 17). Specifically, a node c 436

contains all query keywords q.τ iff, for every keyword κ ∈ 437

q.τ , κ exists in the keyword list of c. If c contains all query 438

keywords, it is inserted in the min-heap with key set to a lower 439

bound distance (e.g., minimum Euclidean distance) between 440

the query location and the node c. If the heap H becomes 441

empty, the algorithm returns R (line 19) which contains up to 442

k closest objects found by the algorithm. 443

Remarks. Although our implementation uses minimum Eu- 444

clidean distance as the lower bound at lines 14 and 18, other 445

lower bounds can also be used. One feature of the Grid Tree is 446

that its nodes do not spatially change regardless of the updates 447

(unlike other popular spatial indexes such as R-tree, kd-tree 448

etc.). Therefore, it is possible to precompute and store lower 449

bound distances. E.g., one may precompute minimum dis- 450

tances from the convex vertices in the map to all nodes of the 451

Grid Tree. During query processing, the closest visible vertex 452

from the query can be used to obtain a lower bound distance 453

for any node of the Grid Tree by using triangular inequality. 454

4.4 Extensions 455

Generalisation of boolean kNN query. Boolean kNN 456

queries can be generalised to find k closest objects that con- 457

tain at least n keywords in q.τ , e.g., for each result object 458

oti ∈ R, |q.τ∩oti.τ | ≥ n where |X| denotes the number of ele- 459

ments in a set. This generalised version can be easily handled 460

by changing the conditions at lines 13 and 17 accordingly. 461

Top-k spatial keyword query. In top-k spatial keyword 462

query [Chen et al., 2013], each object is assigned a score 463

computed using a scoring function that considers both its tex- 464

tual similarity to the query keywords and distance from query 465

location. The query requires finding k objects with the small- 466

est scores (assuming lower scores are better). Our algorithm 467

can answer such queries as follows. The min-heap H is mod- 468

ified such that the keys are minimum scores of the entries 469

instead of minimum distances. The minimum score of an en- 470

try e (an object or a node) is computed using the minimum 471

Euclidean distance between e and query location and the best 472

possible textual similarity of e to query keywords consider- 473

ing the keyword list of e. The algorithm employs sk, score of 474

the kth object in R, instead of dk. The conditions at lines 13 475

and 17 of the algorithm are modified such that an entry is 476

inserted in H only if its minimum score is smaller than sk. 477

Keyword range query. Given a distance range r, a keyword 478

range query returns every object oti ∈ Ot that satisfies the 479

query keywords and d(q.ρ, oti.ρ) < r. Our algorithm can be 480



Game #Maps # Cells # Trav. Cells # Vertices
DA 67 151,420 15,911 1182.9
DAO 156 134,258 21,322 1727.6
BG 75 262,144 73,930 1294.4
SC 75 446,737 263,782 11487.5

Table 1: Total number of maps, and average number of total cells,
traversable cells and vertices in each benchmark.

easily modified by replacing dk with r. This ensures that all481

objects with distances less than r are included in R.482

Constrained keyword kNN queries. In constrained key-483

word kNN queries, the goal is to find the k closest objects484

that satisfy the query keywords and lie in a specified region485

(called constrained region) of the map. E.g., one may want to486

find the nearest “artillery unit” in a specific zone of the game487

map. This query can be answered easily using our proposed488

algorithm by adding a filter to prune every entry e that does489

not overlap with the constrained region.490

5 Experiments491

5.1 Settings492

We run our experiments on a 3.2 GHz Intel Core i7 machine493

with 32 GB of RAM. All the algorithms are implemented in494

C++ and compiled with -O3 flag. We run experiments on495

widely used game map benchmarks [Sturtevant, 2012] of four496

popular games: Dragon Age II (DA); Dragon Age Origins497

(DAO); Baldur’s Gate II (BG) and StarCraft (SC). In total,498

this gives us 373 maps each represented as a grid map. Ta-499

ble 1 shows details of these benchmarks including the average500

size – represented by total number of cells and the total num-501

ber of traversable (i.e., non-obstacle) cells in the maps – and502

average number of obstacle vertices. We generate the objects,503

their keywords and queries as follows.504

Object generation. Initial location of each object is a ran-505

domly generated point in the traversable region of the map.506

We evaluate the effect of object density which is the ratio of507

number of objects to the number of traversable cells in the508

map, e.g., object density of 1% indicates that the number of509

objects is 1% of the total number of traversable cells in the510

map. We vary the density from 0.1% to 10% and the default511

density is 1%. Although we also study the effect of inser-512

tions/deletions, our main focus is on moving objects. We de-513

fine mobility of an object set as the percentage of objects that514

move between two timestamps. We vary the mobility from515

10% to 100% and the default mobility is 70%. We generate516

the moving objects as follow. For each moving object, we517

randomly choose a target location in the trarversable region518

of the map and compute the shortest path from the initial lo-519

cation of the object to the target location. The object then520

starts moving towards the target and travels 1 unit distance521

(i.e., which is equal to the width/height of one cell in the map)522

in each timestamp. When an object reaches the target, a new523

randomly generated target is chosen and the object continues524

to travel on the shortest path towards this new target.525

Keyword generation. For each game, we use ChatGPT526

(Jan 9 version) to obtain 100 items in the game along with527

their descriptions. Specifically, we use prompts like “de-528

scribe characters in [game map]” to get a list of items includ- 529

ing characters, units, weapons, gems, potions etc. We keep 530

prompting ChatGPT until it generates 100 items and their de- 531

scriptions1. We use nltk, an NLP library, to remove stop 532

words and normalise the remaining words (e.g., “abilities” 533

and “ability” both are normalised to “ability”). After this 534

pre-processing, maximum, minimum, and average number of 535

keywords per item in each game are as follows: DA (19,7,15); 536

DAO (17,7,12); BG (17,6,12); SC (18,7,11). For each object, 537

we randomly assign it to an item type in the relevant game. 538

Let m be the number of keywords in that item, we randomly 539

choose a number r between 1 and m and randomly assign r 540

keywords of this item to the object. 541

Query generation. For each experiment, we generate 100 542

queries per timestamp. Location of each query is randomly 543

generated in the traversable region of the map. We evaluate 544

the effect of k which is varied from 1 to 10 where the de- 545

fault value of k is 3. We also evaluate the effect of number 546

of query keywords by varying the number of query keywords 547

from 0 to 3 where the default number of keywords is 2. Fol- 548

lowing the existing works on geo-textual object search [Chen 549

et al., 2013], we generate a query containing x keywords by 550

randomly choosing an object from the map and selecting x 551

words at random from the object as the query keywords. This 552

ensures that the combination of query keywords is meaning- 553

ful and at least one object satisfies the query keywords. 554

Algorithms evaluated. Our approach, Grid Tree, is shown 555

as GT in the experiments. We evaluate different sizes of Grid 556

Tree each shown as GT(m) where GT(m) is the Grid Tree 557

with each leaf node of size at most m × m units. E.g., in 558

GT(4), we stop recursively dividing nodes into children when 559

the node size becomes less than 4× 4. 560

We compare our approach with two state-of-the-art ap- 561

proaches presented in [Zhao et al., 2018a]: IER-Polyanya 562

(shown as IER-Pol) and Interval Heuristic (IH). We use 563

the source code provided by the authors. We also compare 564

against IER-EHL which is the same as IER-Pol except that 565

the shortest distances are computed using EHL [Du et al., 566

2023] instead of Polyanya [Cui et al., 2017]. This gives a 567

like-for-like comparison with our approach as we also em- 568

ploy EHL for shortest distance computation. 569

5.2 Results 570

Each experiment is run for 50 timestamps and, for each times- 571

tamp t, we first update the underlying index considering all 572

object updates at t and then process 100 queries on the up- 573

dated index. We report average update time per timestamp 574

for all 50 timestamps as well as the average query processing 575

time for all 5000 queries. 576

Effect of object density: Figure 3 shows the effect of object 577

density on query time (top row) and update cost (bottom row) 578

on each of the four benchmarks. Overall, the fastest algo- 579

rithms in terms of query processing are GT(16) and GT(64) 580

whereas the best performing algorithms in terms of handling 581

updates is GT(64). We discuss the details of query time and 582

update time below. 583

1https://github.com/goldi1027/GT-EHL

https://github.com/goldi1027/GT-EHL
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Figure 3: Effect of object density on query time (top row) and update time (bottom row) for each approach on default settings (k = 3,
mobility = 70%, # of query keywords = 2).
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Figure 4: Effect of # of query keywords and k on query time

Query time. For lower object density, query performance584

of our approach improves when the leaf nodes are bigger585

(e.g., GT(64)) because the tree height is smaller and the586

search needs to traverse fewer nodes. However, as the den-587

sity increases, the performance of GT(64) degrades because588

each leaf node contains more object requiring the algorithm to589

process a larger number of objects. IER-EHL outperforms the590

other competitors IH and IER-Poly, however, its performance591

is comparable to GT(16) and GT(64) for lower object density592

but worse for higher object density, e.g., for the SC bench-593

mark, the query time of IER-EHL is several times higher than594

that of GT(16). IH is the slowest algorithm (often more than595

2 orders of magnitude slower than our algorithms) because596

it needs to incrementally explore a large search space before597

it can find the answers. IER-Poly is slower than IER-EHL598

mainly because Polyanya is slower than EHL. However, the 599

performance of IER-Poly does not necessarily degrade with 600

the increase in object density. This is because the cost of 601

shortest distance computation for Polyanya decreases when 602

the objects are closer to the query and, for higher density, the 603

result objects are found closer to the query. 604

Update time. The update handling time of Grid Tree signif- 605

icantly improves as the size of leaf nodes increases, e.g., see 606

GT(64). This is because the height of the tree is smaller for 607

GT(64) which means fewer nodes are needed to be updated. 608

Also, the moving objects leave the leaf nodes less often be- 609

cause the leaf nodes are bigger as compared to the leaf nodes 610

in GT(1). The update handling time of GT(64) is up to 2 or- 611

ders of magnitude lower than the IER-EHL because IR-tree 612

is unable to efficiently handle moving objects. Note that we 613

do not show IER-Poly because it also employs IR-tree and, 614

therefore, its update cost is the same as IER-EHL. IH has a 615

significantly smaller update handling time than IER-EHL be- 616

cause it basically needs to maintain the object information in 617

relevant polygons of the navigation mesh. However, its up- 618

date handling time is higher than that of GT(64) but better or 619

comparable to that of GT(16). 620

Effect of query keywords and k. Figure 4 shows the ef- 621

fect of number of query keywords and k on the query perfor- 622

mance (the update time is not affected by them). We show 623

the results for the DA benchmark and the results for the other 624

benchmarks follow similar trends. The query cost of all ap- 625

proaches increases with the increase in number of query key- 626

words. The cost of IH is most significantly affected which is 627

mainly because, as the number of query keywords increases, 628
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Figure 5: Update time for varying mobility and insertions/deletions.

there are fewer objects that contain all query keywords. As a629

result, IH needs to incrementally explore larger search space630

to find the answer. As expected, the cost of all approaches in-631

creases with the value of k because the search space increases.632

GT(64) and IER-EHL are the best performing algorithms in633

terms of query cost.634

Effect of mobility and updates. Figure 5(left) shows the ef-635

fect of number of moving objects at each timestamp (shown636

as mobility). GT(64) handles the updates most efficiently637

and scales better mainly because the moving objects are less638

likely to leave the leaf nodes as the leaf nodes get bigger and,639

therefore, requiring fewer updates. Although less common in640

game maps than moving objects, the objects may be inserted641

and deleted in game maps. Figure 5(right) studies the effect642

of insertions/deletions in the game maps . For each experi-643

ment shown as x% insertions/deletions, at each timestamp t,644

we first randomly insert x
2% of the total objects in the map645

as new objects and then randomly delete the same number of646

objects. The cost is average update cost per timestamp. The647

cost of our approach increases mainly because the Grid Tree648

needs to be traversed for each insertion and deletion (unlike649

object movements which may not require any update if the650

object is in the same leaf node). On the other hand, the cost651

of IH and IER-EHL is lower for insertions/deletions than for652

object movement. This is because to handle a single object653

movement, these approaches require almost double the work,654

i.e., deleting the object followed by reinsertion. Grid Tree can655

still handle updates much faster than IER-EHL but its update656

cost is up to 1 order of magnitude higher than IH. However,657

as shown earlier, IH is up to 2 orders of magnitude slower658

than Grid Tree thus the higher update cost pays off in terms659

of querying performance especially when the number of dele-660

tions/insertions are small compared to the number of queries.661

Effect of object distribution. The previous experiments662

show the results where the object source and target locations663

are randomly distributed in the traversable space of game664

maps. In this experiment, we show the results for cases where665

object source and target locations are clustered in certain ar-666

eas of the map. Specifically, for each experiment, we ran-667

domly generate x rectangles in the traversable space where668

each rectangle area is 1% of the total space. Object source669

and target locations are then generated only within these rect-670

angles. We study the effect of x (i.e., the number of rect-671

angles/clusters) by varying x to 1, 4, 16 and infinity. Here, a672
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Figure 6: Effect of # of rectangles

smaller x implies that objects are clustered in fewer regions in 673

the map and x = ∞ corresponds to the random distribution. 674

Note that the total number of objects remain the same for all 675

experiments (set to default density of 1% as explained in Sec- 676

tion 5.1). The query set is exactly the same as the previous 677

experiments. 678

Figure 6(a) shows the effect of object distribution on query 679

performance on the SC benchmark. Query times of all al- 680

gorithms except IH increase for smaller x. This is because 681

these algorithms use Grid Tree or IR-tree for indexing the ob- 682

jects and the processing cost increases when the objects are 683

densely populated in certain areas. Since IH incrementally 684

explores the search space, its cost depends on how far the ob- 685

jects are located from the query location. When the objects 686

are clustered in certain areas, for most of the queries in this 687

experiment, they are found closer which results in improved 688

querying cost. Overall, query performance trend is similar to 689

the previous experiments, i.e., GT is similar to or better than 690

IER-EHL and 1 to 2 orders of magnitude faster than IH. Fig- 691

ure 6(b) shows the effect of object distribution on the update 692

time of the underlying indexes. The update cost of Grid Tree 693

and IH decreases slightly for smaller x. This is because when 694

x is small, the object source and target locations are closer to 695

each other resulting in fewer objects moving out of the leaf 696

nodes of the Grid Tree or the polygons of navigation mesh 697

used in IH thus resulting in lower update cost. 698

6 Conclusions 699

This paper presents the Grid Tree, a lightweight index for 700

storing moving objects and efficiently retrieving textually rel- 701

evant nearby objects in dynamic video game environments. 702

Extensive experiments on widely used game map benchmarks 703

using realistic keywords demonstrate that the proposed ap- 704

proach generally outperforms the state-of-the-art algorithms 705

in terms of update time and query performance. Grid Tree 706

is a simple, easy-to-implement and highly efficient index 707

which makes it well-suited for deployment in video games, 708

enabling efficient object search in highly dynamic environ- 709

ments. This work also has applications in domains such as 710

indoor location-based services and automated warehouses. 711
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