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Abstract
A k nearest neighbors (kNN) query finds k closest
points-of-interest (POIs) from an agent’s location.
In this paper, we study a natural extension of the
kNN query for multiple agents, namely, the Ag-
gregate k Nearest Neighbors (AkNN) query. An
AkNN query retrieves k POIs with the smallest ag-
gregate distances where the aggregate distance of a
POI is obtained by aggregating its distances from
the multiple agents (e.g., sum of its distances from
each agent). We propose a novel data structure
COLT (Compacted Object-Landmark Tree) which
enables efficient hierarchical graph traversal and
utilize it to efficiently answer AkNN queries. Our
experiments on real-world and synthetic data sets
show that our techniques outperform existing ap-
proaches by more than an order of magnitude in
almost all settings.

1 Introduction
A kNN query [Zhong et al., 2015] returns k points-of-interest
(POIs) closest from an agent’s location, e.g., find three clos-
est gas stations to a taxi driver in a given road network. But in
many applications (as e.g., ride-sharing [Stiglic et al., 2015;
Drews and Luxen, 2013]), it is important to obtain nearby
POIs considering the locations of multiple agents. This mo-
tivates the consideration of aggregate k nearest neighbors
(AkNN) queries [Yiu et al., 2005; Zhu et al., 2010], which are
a natural extension of kNN queries that retrieve POIs consid-
ering their aggregate distance from all agents. For example,
a group of friends might want to decide for a restaurant to
meet such that the maximum distance any of them needs to
travel is minimized. They can issue an AkNN query to find
k restaurants with the smallest aggregate distances where the
aggregate function is max.

More formally, given a POI p and a set of agents Q, the
aggregate distance of p from the agents is dagg(Q, p) =
agg(d(qi, p),∀qi∈Q) where d(qi, p) denotes the road network
distance (e.g., travel time, path length) from an agent qi to
p and agg() is an aggregate function. For example, when
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the aggregate function is sum, dagg(Q, p) =
∑

qi∈Q d(qi, p)

and when the aggregate function is max, dagg(Q, p) =
maxqi∈Q d(qi, p). An AkNN query returns k POIs with the
smallest aggregate distances.

Yiu et al. [Yiu et al., 2005] solve the AkNN query using
a hierarchical search on the road network. They utilize an
R-tree [Guttman, 1984] which recursively divides POIs into
subsets by Minimum Bounding Rectangles (MBRs). During
search, a lower-bound aggregate distance for all POIs in a
child R-tree node is computed using the Euclidean distances
to its MBR. The algorithm visits the most promising R-tree
branches to pinpoint result POIs. However, Euclidean dis-
tance is only a loose lower-bound especially on metrics like
travel time, making the heuristic less efficient. Moreover, the
inefficiency is exacerbated for AkNNs as the error will also
be aggregated. Landmark Lower-Bounds (LLBs) are better
heuristics than Euclidean distance [Goldberg and Harrelson,
2005], however, there does not exist a hierarchical data struc-
ture to compute minimum LLBs to groups of POIs in the
same way as R-trees using Euclidean distance.

In this paper, we address the above mentioned issues and
present two hierarchical indexes, SL-Tree and COLT, which
add significantly more landmarks than previous methods re-
sulting in tighter bounds, while keeping the indexes reason-
ably small. COLT is the first index to support hierarchical
traversal of the road network using landmark lower-bounds.
We propose a heuristic search algorithm to answer AkNN
queries for convexity-preserving aggregate functions such as
sum and max. Our experiments demonstrate that our tech-
niques achieve up to three orders of magnitude improvement.

2 Proposed Indexes: SL-Tree and COLT
First, we give some background. A road network is a graph
G = (V,E) where V is a vertex set andE is an edge set. Each
edge (u, v) ∈ E connects two vertices with weight w(u, v)
representing any real positive metric, e.g., length, travel time,
toll cost of the edge etc. Network distance d(s, t) is the mini-
mum sum of weights connecting vertices s and t. We consider
queries and POIs (also called objects in this paper) to be on
graph vertices for simpler exposition.

Landmark lower-bounds, also called differential heuristics
[Goldenberg et al., 2011], involve selecting a set L of m
“landmark” vertices and then pre-computing distances from



S0

S1 S2

S2A

S2B

S1A

S1B

l2

l1 p1

p2

p3

p4

p5

(a) SL-Tree Subgraph Partitions

S0

S1

S1A S1B

S2

S2A S2B

l1 

l2 

… 

… 

vS1,1,d(l1,vS1,1) vS1,2,d(l1,vS1,2)

vS1,1,d(l2,vS1,1) vS1,2,d(l2,vS1,2)

(b) SL-Tree Node Hierarchy

Figure 1: Subgraph Landmark Tree (SL-Tree)

each landmark to all vertices in V . (1) gives a lower-bound
on network distance dist(q, p) using the triangle inequality.
The maximum lower-bound over all m landmarks given by
(2) gives a tighter lower-bound and is typically accurate even
for small m [Goldberg and Harrelson, 2005].

LBli(q, p) = |d(li, q)− d(li, p)| ≤ d(q, p) (1)

LBmax(q, p) = max
li∈L

(|d(li, q)− d(li, p)|) (2)

For monotonic aggregate functions, the aggregate of
lower-bound distances to object p from each query ver-
tex in Q is a lower-bound LBagg(Q, p) on aggregate dis-
tance dagg(Q, p) [Yiu et al., 2005], i.e., LBagg(Q, p) =
agg(LB(q1, p), . . . , LB(q|Q|, p)) ≤ dagg(Q, p).
Road network index. We first introduce the Subgraph-
Landmark Tree (SL-Tree) to index the road network. The
SL-Tree is a supporting index that we use to construct our
object index efficiently. Each node in the SL-Tree represents
a subgraph of the road network with the root being G. G is
recursively partitioned into b disjoint subgraphs of equal size,
stopping when a subgraph has no more than α vertices. Fig-
ure 1a shows such a partitioning for b = 2 and α = 6 with
the corresponding SL-Tree shown in Figure 1b. Note that we
refer to tree nodes and road network vertices.

For each node nT , we selectm of its vertices as local land-
marks, e.g., l1 and l2 for m = 2 for S1 in Figure 1a (land-
marks for other nodes are omitted for clarity). We then com-
pute distances from each li to every vertex in nT ’s subgraph
using Dijkstra’s search, which are then stored in distance list
DLi. Figure 1b shows the distance lists for the landmarks of
S1 (those for other nodes are again omitted). Note that sub-
graphs are stored implicitly by mapping each road network to
the SL-Tree leaf node that contains the vertex.
Object index. The SL-Tree can then be used to efficiently
construct our object index, the Compacted Object-Landmark
Tree (COLT). COLT is a carefully compacted version of the
SL-Tree for object set P . Compaction ensures that there are
m local landmarks for at most λ objects, to increase the likeli-
hood of finding a tighter lower-bound for more objects. Note
that the SL-Tree is shared between construction of all COLT
indexes, i.e., for many different object sets.

Given SL-Tree T , COLT indexC is constructed by visiting
nodes in T in a top-down manner and creating corresponding
nodes in C. Let nT be the currently visited node in T (ini-
tially the root). A corresponding node nC is created in C for
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nT . Let λ be the maximum number of objects in a leaf node
for COLT. If nT contains more than λ objects, the search ex-
pands to its children. Otherwise, the search is pruned at nC ,
which becomes a leaf-node of COLT. For the new leaf nC , an
Object Distance List ODLi is created in nC for each land-
mark li in nT . These are simply the distance lists of nT , ex-
cept with only the distances for object vertices from P . Any
interior nodes with only one child are merged with the child
(keeping the child’s more localized landmarks). Figure 2a
shows a COLT index for λ = 2 constructed from the SL-Tree
in Figure 1b based on the 5 object vertices (green shaded ver-
tices) in Figure 1a. Note that S1A and S1B were removed as
construction was pruned at S1 due to its number of objects
(ODLs of other nodes are omitted for clarity). While we have
chosen λ < α to simplify the example, generally λ ≥ α is
required to guarantee no leaf node and therefore no ODL con-
tains more than λ objects. For example, if every vertex in a
leaf node is an object there will be α objects in its ODL.

Each object distance list ODLi of leaf node nleaf in
C is sorted on distance. In non-leaf nodes nC , we only
store the minimum distanceminnC ,li and maximum distance
maxnC ,li to any object in the node from each of its landmarks
li. These are computed using distance lists in corresponding
SL-Tree nodes. Next, we use this information to compute
lower-bounds to nodes and traverse the hierarchy.

2.1 Lower-Bound Heuristic for Graph Traversal
Similar to the lower bound in (1), we can compute a lower
bound for all objects contained within a node nC in COLT
index C by (3) for one landmark li ∈ nC . (4) gives the best
lower-bound over all m landmarks of nC :

LBli(nC , q) =


d(li, q)−M+ if d(li, q) ≥M+

M− − d(li, q) if d(li, q) ≤M−
0 else

(3)

LBmax(nC , q) = max
li∈nC

(LBli(nC , q)) (4)

Thereby, M− := minnC ,li and M+ := maxnC ,li for nC
are already available in COLT. However, for non-root nodes,
d(li, q) in (3) is only available if li and q are in the same sub-
graph. Pre-computing this distance for all V and landmarks
is infeasible given the space implications. Alternatively, com-
puting d(li, q) on the fly using another technique is expen-
sive and may be wasteful if the node does not contain re-
sults. Interestingly, (3) still holds if we replace the distances
with lower-bound LB(li, q) and upper bound UB(li, q), as in



(5). The distance lists of the root or lowest common ancestor
SL-Tree node can be used to compute the best LB(li, q) and
UB(li, q) by (2) and its upper-bound equivalent (by adding
rather than subtracting distances), respectively. Choosing the
tightest over all landmarks of nC gives an inexpensive and
accurate bound even with a few landmarks:

LBli(nC , q) =


LB(li, q)−M+ if LB(li, q) ≥M+

M− − UB(li, q) if UB(li, q) ≤M−
0 else

(5)

Landmark choices. We first partition the plane into m
equally sized slices around the Euclidean center of the sub-
graph and then choose one border vertex as a landmark from
each slice. If a slice has no borders, we choose the slice vertex
furthest from the Euclidean center.

Effective lower-bounds. The accuracy of COLT’s inexpen-
sive lower-bounds increases as we delve deeper into the hier-
archy. In Figure 2b, let us say we use l1 and its maximum
object distance to compute a lower-bound for the child node.
At the lower level, we may use the child’s landmarks like l2,
which are local to the objects and more likely to produce a
better lower-bound. This lets us differentiate tree branches
and pinpoint the most promising candidates. Next, we utilize
this as a decoupled heuristic for AkNN querying.

Complexity. COLT takes O(|P |) space (linear to the input)
and O(|P | log |P |) time, while SL-Tree space and time only
increase by a factor of O(log |V |) over ALT. We refer the
reader to [Abeywickrama et al., 2020] for full derivation.

3 Query Algorithm for AkNN Search
We utilize COLT to retrieve candidate objects (POIs) likely to
be AkNN results, by their lower-bounds using a novel prop-
erty of Object Distance Lists (ODLs) as explained next.

3.1 Object Distance Lists and Convexity
Note that (1) can be expressed as an absolute value function
of form f(x) = |C − x| for some landmark l. Here, C is
the constant distance d(l, q) between the landmark l and the
query point q, and x is a variable distance d(l, p) depend-
ing on the object p ∈ P . Since absolute-value functions are
convex, f(x) is minimized for x closest to C. This property
is useful to find the minimum lower-bound in an Object Dis-
tance ListODL for the landmark l for a single query vertex q.
Since ODL essentially stores the domain of x for all objects
in the node, the minimum lower-bound for the landmark l can
be found by searching ODL for d(l, c) closest to d(l, q) for
some object c ∈ ODL. Since ODL is sorted, this is possible
using a modified binary search, as observed by [Abeywick-
rama and Cheema, 2017], in only O(log λ) time.

Finding the minimum lower-bound aggregate distance is
complicated by the presence of multiple query locations qi ∈
Q. But we know that the aggregate of lower-bound distances
from each query vertex qi is a lower-bound on aggregate
distance for monotonic functions [Yiu et al., 2005]. There-
fore, the function to minimize becomes f(x) = agg(|C1 −
x|, · · · , |Cn − x|) for a monotonic aggregate function agg

where Ci is d(l, qi) for the given landmark l and a query
qi ∈ Q. At first glance, this might suggest we need to search
ODL for multiple values (i.e., once for each Ci) to find the
object with minimum aggregate lower-bound. Surprisingly, it
is not necessary for aggregate functions that preserve convex-
ity. Moreover, we find that the most widely used functions,
max and sum, do preserve convexity.

Specifically, once the minimum x∗ of the function f(x)
is found, iteratively retrieving the object that gives the next
smallest lower-bound simply requires checking the element
to the right or left of x∗ in ODL, due to the convexity of the
function. However, unlike the single query case, finding the
minimum of f(x) is not obvious for aggregate kNN queries.
Below, we show how to find the minimum for two common
aggregate functions, max and sum.

Lemma 1. Consider the aggregate function defined by the
sum of a set of absolute functions f(x) = sum(|C1 −
x|, · · · , |Cn − x|). The minimum x∗ of f(x) is the median
value of the constants C1, ..., Cn.

Lemma 2. Consider the aggregate function defined by the
maximum of a set of absolute functions f(x) = max(|C1 −
x|, · · · , |Cn − x|). The minimum x∗ of f(x) is Cmin+Cmax

2 ,
i.e., the average of the minimum and maximum constants.

We omit the proofs of Lemmas 1 and 2 which can be found
in the full version of this paper [Abeywickrama et al., 2020].

3.2 Algorithm
We use hierarchical graph traversal on the COLT index to
guide us towardsODLs most likely to contain AkNN results.
Our algorithm maintains a priority queue PQ containing ob-
jects and COLT nodes keyed by their aggregate lower-bound
distances fromQ. The algorithm iteratively extracts the mini-
mum lower-bound queue element and terminates when either
PQ becomes empty or when the key of the extracted element
is at least equal to Dk where Dk is the aggregate distance of
the k-th AkNN found by the algorithm so far.

If an object is extracted from PQ, its exact aggregate dis-
tance is computed and the result set R and Dk are updated
accordingly. If a non-leaf node is extracted then each of its
child c is inserted in PQ with key set to c’s aggregate lower-
bound score computed according to (4) and (5). If a leaf node
n is extracted from PQ, the algorithm chooses an object p
with the smallest aggregate lower-bound among the previ-
ously unseen objects in n and inserts p in PQ. The node n
is re-inserted in PQ if the algorithm has not already seen all
objects in it. The object p in the node n is chosen as follows.
If n is seen for the first time by the algorithm, p is chosen us-
ing a binary search to find the minimizing list index given by
Lemma 1 or 2. Otherwise, p must be an object on the right or
on the left of the previously seen objects in this leaf node (due
to the convexity of the function), thus, is retrieved in O(1).

4 Experiments
We use the continental US road network that contains
23, 947, 347 vertices and 57, 708, 624 travel time edges com-
bined with 8 real POI sets (see Table 1) for the US from Open-
StreetMap provided by [Abeywickrama et al., 2016]. For



Parameter Values
k 1, 5, 10, 25, 50
d 1, 0.1, 0.01, 0.001, 0.0001
A (%) 1, 5, 15, 50, 100
|Q| 2, 4, 8, 16, 32
Real-World
POI Set (|P |)

Schools (160,525), Parks (69,338), Fast Food
(25,069), Post Office (21,319), Hospitals
(11,417), Hotels (8,742), Universities (3,954),
Courthouses (2,161)

Table 1: Parameters (defaults in bold if applicable)

sensitivity analysis, we generate synthetic POI sets chosen
uniformly at random for density d where d=|P |/|V |. We use
A to denote a connected subgraph of G with A% of the to-
tal vertices |V |. Query vertices are then chosen uniformly at
random from the A% subgraph which represents how “local”
a group of query locations are [Yiu et al., 2005]. We show
the results over 500 queries considering max function. The
results for sum can be found in [Abeywickrama et al., 2020].

We compare our algorithm against the Incremental Eu-
clidean Restriction (IER) [Yiu et al., 2005] and a concur-
rent expansion approach which adapts the state-of-the-art
kNN heuristic based on Network Voronoi Diagrams (NVDs)
[Abeywickrama and Cheema, 2017] for AkNN queries. To
ensure fairness, each technique employs Pruned Highway La-
beling (PHL) [Akiba et al., 2014], one of the fastest net-
work distance computation techniques, to compute network
distances in each approach – hence techniques are named
IER-PHL, NVD-PHL, and COLT-PHL. SL-Trees and COLT
use branch factor b = 4, maximum object distance list size
λ = 128 (which is also α) andm = 4 landmarks per node for
ideal performance vs. index size. NVD uses the ALT index
[Goldberg and Harrelson, 2005] with m = 16 random land-
marks to compute LLBs, which we also use as it is essentially
the root of an SL-Tree. All experiments were conducted using
memory-resident indexes for fast query processing.

Query performance on real-world data. Figure 3 depicts
query time on real-world POI datasets, with the number of
objects increasing from left to right. COLT significantly out-
performs the other methods across the board, with up to two
orders of magnitude improvement. COLT tends to improve
more on larger POI sets, where it is more difficult to distin-
guish between objects.

Query performance on synthetic data. A sensitivity anal-
ysis of the query times on the synthetic benchmark sets with
respect to the object density d, the value of k, the number of
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Network Indexes Obj. Indexes (d=0.001)
ALT SL-T PHL COLT NVD R-T

Time 71s 25m 25m 63ms 11s 6ms
Space 1.4GB 4.6GB 16GB 0.9MB 28MB 0.9MB

Table 2: Preprocessing cost (SL-T is SL-Tree & R-T is R-Tree)

query vertices |Q|, and the percentage A of graph vertices in
a subgraph from which we choose query vertices is provided
in Figure 4. This reaffirms the observations on real-world
data and shows the improvement of COLT is consistent across
varying parameters, reaching up to 3 orders magnitude.
Preprocessing cost. Table 2 shows preprocessing cost for
the road network and object indexes. The SL-Tree consumes
greater space than ALT, but not significantly so. Moreover,
only the root node of the SL-Tree is required for query pro-
cessing, which has the same index size as ALT. The indexing
time is comparable to PHL, which possesses one of the fastest
pre-processing times for high-performance indexes [Akiba et
al., 2014]. COLT is significantly smaller and faster to con-
struct than NVDs and is comparable to R-trees as both have
space complexity linear to the input.

5 Conclusion
We present two novel light-weight indexes, SL-Tree and
COLT, and design an efficient hierarchical traversal algorithm
to solve AkNN queries for any convexity preserving aggre-
gate function. Our experiments on real-world and synthetic
datasets show that the proposed approach outperforms exist-
ing techniques by up to three orders of magnitude.
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