
Contracting and Compressing Shortest Path Databases

Bojie Shen, Muhammad Aamir Cheema, Daniel D. Harabor, Peter J. Stuckey
Faculty of Information Technology, Monash University, Melbourne, Australia
{bojie.shen, aamir.cheema, daniel.harabor, peter.stuckey}@monash.edu

Abstract

Compressed Path Databases (CPD) are powerful database
driven methods for shortest path extraction in grids and in
spatial networks. Yet CPDs have two main drawbacks: (1)
constructing the database requires an offline all-pairs precom-
pute, which can sometimes be prohibitive and; (2) extract-
ing a path requires a number of database lookups equal to its
number of edges, which can be costly in terms of time. In
this work, we consider how CPD methods can be improved
and enhanced by: (i) contracting the input graph before pre-
processing and; (ii) limiting the preprocessing step to only
a selected subset of graph nodes. We also describe a new
bi-directional path extraction algorithm which we call CH-
CPD. In a range of experiments on road networks, we show
that CH-CPD substantially improves on conventional CPDs
in terms of preprocessing costs and online performance. We
also report convincing query time improvements against a
range of methods from the recent literature.

Introduction
Shortest path queries are one of the most ubiquitous practical
uses of computing. This query is the underlying computation
in route planning software (Delling et al. 2017), such as Bing
and Google Maps. Shortest paths are also used as input for
higher-level planning tasks, such as ride sharing (Alonso-
Mora et al. 2017), traffic assignment (Luxen and Sanders
2011) and for computing collision-free plans for teams of
moving agents (Stern et al. 2019).

In each application setting, shortest path problems are
myriad and solutions are needed extremely fast. Among
the leading methods in this area are Compressed Path
Databases (Botea 2011; Strasser, Harabor, and Botea 2014):
a family of techniques that forgo conventional state-space
search and instead extract shortest paths using precomputed
first-move data. A CPD can be understood as an oracle
CPD[s, t] which, given a start-target pair, resp. s and t,
tells the identity of the first edge on the optimal path: from s
toward t. Using a simple recursive procedure, CPDs can ex-
tract entire paths at ultra-fast speed (Sturtevant et al. 2015).
There are however two drawbacks: (1) the time complexity
for building the database is quadratic in the size of the input
graph, which can be prohibitive in some cases; (2) the query
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time performance grows supra-linearly with the number of
edges in the shortest path,1 which affects performance when
there are many edges to extract.

To mitigate the disadvantages of CPDs we investigate
connections with another family of successful, but search-
based, speedup techniques called Contraction Hierarchies
(CH) (Geisberger et al. 2008, 2012). The CH method can be
understood as a type of embedded graph abstraction (Holte
et al. 1996). During preprocessing, additional “shortcut”
edges are added to the graph. During online search, these
shortcuts help the search to bypass many “unimportant”
nodes which would otherwise need to be expanded. More-
over, the total number of edges on a path, from start to target,
is reduced. For this reason we consider contracted graphs
in combination with CPDs. First, CH graphs help to im-
prove CPD online performance, by reducing the number of
lookups we need to perform when extracting a path. Second,
CH graphs help to reduce CPD offline costs, by allowing us
to speed up the many Dijkstra searches required to construct
first-move data. In broad strokes, our strategy is as follows:

• We compute distance tables for a small number of impor-
tant CH nodes. We show that these tables can be used to
provide bounds for, and therefore can help to speed up,
each of the many Dijkstra searches necessary for comput-
ing first-move data.

• We also compute first-move data for only a selected subset
of CH nodes. This further reduces the overall time needed
for CPD precomputation and also lowers the storage cost.

• We develop a new bi-directional query algorithm, which
combines online search in a CH with CPD path extrac-
tion. This allows us to compute shortest paths substan-
tially faster than either CH or CPD.

We compare our approach on several well known road net-
work benchmarks. Our principal points of comparison are
SHP (Li et al. 2017) and PHL (Akiba et al. 2014): two recent
and also database-driven query algorithms. We show that,
for computing shortest paths, CH-CPD offers substantially
better performance and has overall smaller storage costs.

1Complexity per lookup is logarithmic in the size of the com-
pressed data w.r.t the corresponding row.
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Figure 1: From the source node G, the optimal first move to
any node colored red (resp. purple) is D (resp. E).

Ordering G D A C J E H F B I

G * D D E E E E E E E

J E E E C * E H H H H

I H H H H H H H H B *

Table 1: First moves for G, J and I for the example of Fig. 1

Preliminaries
Let G = (V,E,w) be a (directed or undirected) graph, with
nodes V , edgesE ⊆ V ×V andw : E → R+ a weight func-
tion that maps each edge e ∈ E to a non-negative weight
w(e). A path p from s to t in G is a sequence of nodes
〈n0, n1, n2, . . . , nk−1, nk〉, where k ∈ N+, n0 = s, nk = t,
and (ni, ni+1) ∈ E, 0 ≤ i < k. The length of the path is
|p| =

∑k−1
i=0 w(ni, ni+1) and d(s, t) denotes the length of

the shortest path, from s to t in G. For exposition only, we
will assume G is undirected.

Compressed Path Database: A CPD is a data structure
that specifies the first edge (equiv. move) m on an optimal
path, from any node s towards any node t (Botea 2011).
We often use the endpoint m to refer to a first-move edge
(s,m), with the current node s being clear from context.
Each CPD is constructed offline in a preprocessing phase.
For each source node s ∈ V , we run a complete Dijkstra
search. The result is a first move table, T (s), which records
all optimal first moves; from s to any reachable target t ∈ V .
The table is compressed via Run-Length Encoding (RLE)
(Strasser, Harabor, and Botea 2014) and stored to the disk,
concluding one iteration. Being independent, the iterations
can be run in parallel, with a speed-up linear in the number
of processors. For the effectiveness of RLE compression, the
columns of table are ordered by Depth First Search (DFS) as
suggested by Strasser, Botea, and Harabor (2015).

Example 1. Consider the graph shown in Figure 1. The
first move tables for nodes G, J and I are shown in Table 1,
where * is a wildcard symbol that can be combined with any
run. The compressed RLE string of each row is respectively
[(1,D),(4,E)], [(1,E),(4,C),(6,E),(7,H)] and [(1,H),(9,B)].

With a CPD in hand, we begin the online phase of the al-
gorithm. Given a start-target pair (s, t) (equiv. instance). our
task is to extract an optimal path CPDPath(s, t). The imple-
mentation of this function requires a simple binary search
through a compressed string of symbols representing the
first-move row T (s) (Strasser, Harabor, and Botea 2014).
Once a move is extracted it can be immediately followed,
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Figure 2: We show the result of contracting E (resp. H) in
purple (resp. red). Dashed edges indicate shortcut edges.

Ordering G D A C J E H F B I

d(J, ) 4 5 6 1 0 2 1 2 5 2
d(A, ) 2 1 0 7 6 4 7 8 11 8
d(B, ) 9 10 11 6 5 7 4 4 0 3

Table 2: Arrays of costs for nodes J, A and B shown in Fig. 1
.

giving rise to a simple recursive procedure that terminates
after reaching the target (or after k steps for a partial path).

Contraction Hierarchies: A CH is an augmented multi-
level graph that can be exploited to speed up pathfinding
search. Building a CH is a simple process requiring only the
repeated application of a contraction operation to the nodes
of the input graph G. In broad strokes:

1. Apply a total lex orderL to the nodes ofG. We use the ND
order suggested in (Dibbelt, Strasser, and Wagner 2016).

2. W.r.t. L, choose the least node v from the graph that has
not been previously selected.

3. (Contraction) Add to G a shortcut edge (u,w) between
each pair of in-neighbour u and out-neighbour w of v for
which: 1) u and w are both lexically larger than v; and 2)
the shortest path from u to w passes through v. To reduce
the number of shortcuts added in G, the subpath 〈u, v, w〉
should be both unique and optimal. Fewer shortcuts im-
prove query performance but verifying local optimality
requires additional pre-processing time.

Example 2. In Figure 2, we contract a toy graph in al-
phabetical lex order. Note how shortcut edges (dashed) can
connect start and target faster than would otherwise be pos-
sible. Without shortcuts, the optimal path from A to B has
7 edges: 〈A, D, G, E, J, H, I, B〉. An equivalent-cost path, with
shortcuts, traverses only five edges: 〈A, D, G, J, I, B〉.

A core idea of contraction hierarchies is that shortcut
edges can bypass one or more intermediate nodes in a sin-
gle step. However, for each shortcut edge (u,w) and each
intermediate node v we have f(v) ≤ f(w); i.e., given a
monotonically increasing cost function f , a simple best-first
search will usually expand v beforew in order to compute an
optimal path. To achieve a speedup, authors in (Geisberger
et al. 2008) divide the set of edges E into two as follows:
• E↑ = {(u, v) ∈ E | u <L v}

(i.e., the set of all “up” edges); and
• E↓ = {(u, v) ∈ E | u >L v}

(i.e., the set of all “down” edges).



The following results, paraphrased here, are due to (Geis-
berger et al. 2008).
Lemma 1. (ch-path): For every optimal path π∗s,t in E,
there is a cost equivalent ch-path π′s,t whose prefix 〈s, . . . k〉
is found in E↑ and whose suffix 〈k . . . t〉 is found in E↓.
Corollary 1. (apex node): Every ch-path has a node k
which is lexically largest among all nodes on the path.

Following Lemma 1, a natural decomposition of the short-
est path problem in a contraction hierarchy is the following:
first compute a subpath 〈s, . . . , k〉 in E↑; next, compute a
second subpath 〈k, . . . , t〉 in E↓. All that remains is to iden-
tify a suitable node k which minimises the total distance.
BCH is a variation on bi-directional Dijkstra search that was
developed specifically for solving such problems.

In forward direction, BCH considers only the outgoing
edges inE↑. In reverse direction, BCH considers only the in-
coming edges in E↓.2 Each meeting point of the two search
frontiers corresponds to a tentative shortest path. Unlike
standard bi-directional Dijkstra search, which can be termi-
nated as soon as the sum of the minimum f -values on open
lists for both directions is no less than the length of best can-
didate path, BCH continues until it can prove the meeting
point k minimises the total distance between s and t, i.e.,
BCH stops when the minimum f -value on both open lists
are at least as large as the best candidate path found so far (or
when both lists are empty, if there is no such path). Though
simple, BCH remains state of the art for pathfinding on road
networks with millions of nodes (Geisberger et al. 2012).

Landmarks: Landmarks (Goldberg and Harrelson 2005)
is a method for generating admissible estimates in shortest
path search. We use landmarks to further improve the per-
formance of the BCH query algorithm. For each landmark
l ∈ L, we select l on the border of the graph following the
same procedure as Sturtevant et al. (2009), and compute an
array that records the distance to every other node. The ar-
rays of costs are exploited to lower-bound the true distance,
from any node u to any other node v:

landmark(u, v) = max{|d(u, l)− d(v, l)| | l ∈ L}

Example 3. Consider Table 2 that shows arrays of costs for
three landmarks. The lower-bound distance from G to F is
max{|4− 2|, |2− 8|, |9− 4|} = 6 (i.e., the true distance).

Combining CH and CPD
Given a weighted graph G, we first construct a Contrac-
tion Hierarchy. With this contracted graph in hand, a CPD
can now be constructed by following the same general pro-
cedures already described. However, we introduce three
changes: (i) we modify the successor generating function of
the Dijkstra algorithm so that every node is reached along a
ch-path; (ii) we enhance the basic Dijkstra algorithm using
precomputed distance tables, which speeds up the compu-
tation of first-move data; (iii) we store compressed data for
only a subset of all graph nodes.

2Other edges from E, such as incoming up-edges and outgoing
down-edges are safely discarded by BCH to save space.
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Figure 3: Constructing CPD on top of CH. The source node
G is highlighted as green. The first move on the optimal path
from source node to any node are D, E and J shown as red,
purple and orange, respectively.

CH-Paths in Dijkstra Search: Recall a ch-path always
has an apex node which is lexically larger than all the other
nodes on the path. For a given source s and target t, decon-
structing the ch-path gives following three cases:

1. Up ch-path: t is an apex node (i.e., t >L v for v ∈
〈s, . . . t− 1〉)

2. Up-Down ch-path: an intermediate node k is an apex node
(i.e., k >L v for v ∈ 〈s, . . . k − 1〉 | 〈k + 1, . . . t〉)

3. Down ch-path: s is an apex node (i.e., s >L v for v ∈
〈s+ 1, . . . t〉)

In other words, before the apex node, every subsequent node
on a ch-path is lexically larger than the previous. After the
apex, every subsequent node on a ch-path is lexically smaller
than the previous. We modify Dijkstra search to only con-
sider ch-paths by way of a simple neighbour pruning rule
called UTD (Up-Then-Down) (Harabor and Stuckey 2018).
The idea is simple: (i) if the predecessor of the current node
is lexically larger than the current node we prune all up suc-
cessors (this covers case 3); (ii) if the predecessor is lexically
smaller than the current node we generate all successors, up
or down (this covers case 1 and 2). The only paths disal-
lowed by UTD involve edges to lexically smaller nodes fol-
lowed by edges to lexically larger nodes; i.e., non ch-paths.

Distance Tables Enhancement: In a CH, nodes with high
lex values appear often as the apex node along a great many
shortest ch-paths. We exploit this observation to reduce the
cost of first-move preprocessing, as follows:

Caching: For a given contracted graph G, we first select
a set of nodes C that have the largest lex values. For each
node vc ∈ C, we run our modified single-source Dijkstra
search and store not only a first move table but also a table
of distances, from vc to every other node in the graph.

Pruning: For each remaining node v 6∈ C, we start a
single-source Dijkstra search as usual but we never gener-
ate any successors for any cached node vc ∈ C. When ex-
panding a cached node we instead refer to the cached dis-
tances and attempt to relax the tentative estimate g(v, v′) for
each node v′ ∈ G. We perform the relaxation if g(v, v′) >
d(v, vc) + d(vc, v

′) where d(vc, v′) is the cached distance.
The first move table of v is also relaxed accordingly using
the first move on the current optimal path P(v, vc). Simul-
taneously relaxing all tentative distances gives tight upper-
bounds sooner and helps the search to terminate faster. First,



we never expand successors for any node vc ∈ C. Second,
all distance information usually propagated by such nodes
is copied into the first move table of v. That means we also
never expand any node n 6∈ C where the apex of the optimal
ch-path from v resides in C. It is easy to see this approach
limits the search space and allows for faster termination.

On Demand Reading: Storing all distance tables in
RAM requires O(|C||V |) space and can be prohibitive as
|C| grows large. We thus store the tables to disk and retrieve
them on demand: whenever the search expands a node vc ∈
C. When loading, distance data is mapped into virtual mem-
ory at once which avoids unnecessary I/O operations.
Example 4. Consider building the CPD for the graph of
Figure 3. Assume we have already constructed C = {J}.
We begin a Dijkstra search from G and update tentative dis-
tances and first move tables when expanding J. The search
terminates after expanding D, A, E and J, without exploring
the rest of the graph. The first moves to C, H, I, F, and B are
the same as for J since the shortest ch-path from G to each
of these nodes is via J.

Partial CH-CPD: CH and cost caching help to speed up
each Dijkstra search, which means computing first-move
data is faster in practice compared to the original base-
line. However the worst-case time complexity is unchanged:
O(|V ||E|+ |V |2 log |V |). To further improve preprocessing
costs, we propose to compute and store first-move data for
only a selected subset of the full CH graph (i.e., T ⊆ G).

There are many ways to choose T but an important re-
quirement is that the subgraph is closed, in other words, for
each pair of nodes, s, t ∈ T , the shortest ch-path must also
belong to T . Since every ch-path is always an Up-Down
path, we can therefore select any subset of vertices which
is lexicographically upwards closed, i.e., T (vl) = {vl ∈
V | vl >L v for v ∈ V \ T}. Clearly all Up-Down paths be-
tween vertices in T (vl) only make use of vertices in T (vl).

With T selected, we now compute a partial CPD for some
upper part of the contraction hierarchy. However we also
need to define a new shortest path algorithm, to support
queries for arbitrary pairs of start s and target t. Here we
combine the BCH query method with CPD path extraction.
The approach is similar to End Point Search (EPS) (Shen
et al. 2020) in that, when a node v ∈ T is expanded, we use
the CPD to extract candidate shortest paths: from v to all
other nodes v′ ∈ T that have been expanded in the opposite
direction. We give a detailed description in the next section.

Bi-directional CPD Search
Our search algorithm is similar to BCH but with some
fundamental differences. Firstly, we employ bi-directional
A* search instead of bi-directional Dijkstra. In particular,
for each s and t query, our search is guided by a land-
mark heuristic; i.e., the f -value for a node v is g(s, v) +
landmark(v, t) with g(s, v) ≥ d(s, v) being a tentative up-
per bound for the optimal distance from s to v. Secondly,
when the search expands a CPD node (i.e., a node that exists
in the partial CPD), we do not generate any successors. In-
stead, the partial CPD is used to extract paths/distances to all
CPD nodes expanded in the other direction. We also reduce

Algorithm 1: Bi-directional CPD Search
Input: s: start, t: target, CPD: for vertices in the set T
Output: an optimal path from s to t
Init: Vs = ∅, Vt = ∅, p = 〈〉, |p| =∞, Rs = ∅, Rt = ∅

1 cur = s; opp = t;
2 Qs = {s}; Qt = {t}
3 while both A* searches are not exhausted do
4 v = pop(Qcur);
5 if v ∈ T then // v is a CPD node
6 Vcur ← Vcur ∪ {v}
7 for each v′ ∈ Vopp do
8 if g(cur, v) + d(v, v′) + g(v′, opp) < |p| then
9 p← 〈cur, v, v′, opp〉

10 else
11 if v ∈ Ropp then // v reached by opp search
12 if g(cur, v) + g(v, opp) < |p| then
13 p← 〈cur, v, opp〉
14 A*Expand(v,Qcur, Rcur)
15 if Qopp is not empty then
16 cur, opp← opp, cur;
17 return p after unpacking it;

the number of first move extractions using pruning rules dis-
cussed later. Similar to BCH, our approach considers only
“up” edges and uses stall-on-demand: a well known and per-
formance improving technique (Geisberger et al. 2008).

The pseudo-code of our approach is shown in Algo-
rithm 1. We start the bi-directional search from s and t with
separate queuesQs andQt. We use cur (resp. opp) to denote
the current (resp. opposite) direction in which the search is
expanding; i.e., if cur is start then opp is target and vice
versa. The optimal path p and the optimal path length |p| are
initialized to be empty and infinity, respectively.

In each iteration, we pop the node v with the smallest f -
value from the current queue Qcur to expand. If this node
is in the CPD (i.e., v ∈ T ), we add this to Vcur to record
that this CPD node is expanded by the search from cur.
Then, we use the CPD to efficiently compute the shortest
path/distance from v to each CPD node v′ ∈ Vopp found by
the search from the opposite side opp. If, for any v′ ∈ Vopp,
g(cur, v) + d(v, v′) + g(v′, opp) is smaller than |p| (length
of the current optimal path p), we update the optimal path
to be 〈cur, v, v′, opp〉. Note that this only records two in-
termediate CPD nodes on the path p. The complete optimal
path is recovered once at the end of the algorithm. Also, note
that g(cur, v) and g(v′, opp) are already known due to the
two A* searches from cur and opp, respectively, whereas
d(v, v′) is efficiently extracted using the CPD.

If the node v is not a CPD node, we follow bi-directional
search. For node v that we have met from the other direc-
tion (i.e., v ∈ Ropp), we calculate the path length from s to
t via v and replace p with this path if it is better than the
current p. We then expand v, adding its neighbours to the
“reached nodes” from the current directionRcur and the pri-
ority queue Qcur, pruning as appropriate using the current
incumbent path length. Finally, we swap the search and pro-
ceed in the other direction (assuming opp is not already ex-
hausted). Note that the search never expands beyond a CPD



node, i.e., only non-CPD nodes can generate successors.
The loop terminates when both of the A* searches ex-

haust. We say that an A* search exhausts if either the queue
becomes empty or the top node v has f -value at least equal
to |p|. When the loop terminates, we unpack p to obtain the
complete path and return it. First, the Up-Down path in the
contraction hierarchy is recovered from p by using the pre-
decessor for each node (recorded either during the two A*
searches or the CPD path extraction as discussed shortly).
Then, the shortcuts in this Up-Down path are unpacked to
obtain the optimal path in the original graph. Next, we dis-
cuss pruning to speed up the algorithm.

Pruning: Recall, at line 8, we compute d(v, v′) for every
v′ ∈ Vopp using the CPD. This involves recursively obtain-
ing first moves to identify a complete path from v to v′. In
some cases, we can avoid computing d(v, v′) by checking if
g(cur, v) + landmark(v, v′) + g(v′, opp) ≥ |p|. For each
pair v, v′ that cannot be pruned in this way, we employ a
caching scheme that can reduce unnecessary first move ex-
tractions. Specifically, whenever we extract a first move u
on the shortest path from v to v′, we also record g(cur, u)
which corresponds to the shortest distance from cur to u
seen so far. We also maintain the predecessor of u which
helps in path recovery as discussed earlier. Later, when ex-
tracting a path from any v ∈ Vcur to any v′ ∈ Vopp, we can
terminate the recursion early if we reach a node u for which
g(cur, u) < g(cur, v) + d(v, u). This is because we already
have explored a path to u which is shorter than the current
path to u via v. Notice that our caching strategy maintains
only tentative distances. As such it requires no additional
memory overheads beyond what is typically allocated for
bi-directional search. Though simple, this approach substan-
tially improves the performance of CH-CPD search.

Theorem 1. Algorithm 1 returns an optimal path.

Proof. (Sketch) Clearly Algorithm 1 examines all the paths
that either meet, or connect via a pair of CPD vertices
(vs, vt). But avoids exploring the vertices that have the f -
values bigger than the cost of current shortest path |p| (thus
can never be part of optimal path), and vertices pairs (vs, vt)
of CPD where d(s, vs) + d(vs, vt) + d(vt, t) ≥ |p|.

Example 5. Consider the example in Figure 4 and assume
that D to J are CPD nodes (shown in red) and C is a land-
mark (shown in blue). The A* search from start A first ex-
pands the CPD node D. Then, the A* search from target B
expands the CPD node I. CPD is used to extract the path
from I to D and the distances from B to each node on the path
are cached. The optimal path p is updated to be 〈B, I, D, A〉
with length 11. A* search from A prunes the node C using
the landmark heuristic because g(A, C)+landmark(C, B) =
10 + 6 = 16 > 11. This A* search exhausts. The A* search
from the target expands F. It needs to extract a path from
F to D using the CPD. First moves are extracted and when
the node J is reached, the path extraction stops. This is
because the cached distance g(B, J) = 5 is smaller than
g(B, F) + d(F, J) = 6. A* search from the target is also ex-
hausted. The path 〈B, I, D, A〉 is unpacked and returned.
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Figure 4: A* search from start (resp. target) expands D (resp.
I and F). C is pruned by landmark heuristic.

Experiments
We test our proposed algorithms against baseline imple-
mentations of our two main ingredients, CH and CPD, and
against other state-of-the-art methods from the recent liter-
ature. By CPD we refer to Compressed Path Databases, as
represented by SRC (Strasser, Harabor, and Botea 2014) and
implemented by original authors.3 CH refers to Contraction
Hierarchies (Geisberger et al. 2008, 2012), as implemented
in RoutingKit.4 CH+L (CH + Landmarks) is a customised
variant similar to CH where we replace bidirectional Dijk-
stra search with bidirectional A* and Landmark heuristics.
We show CH+L performs significantly better than CH. Our
approach meanwhile is denoted CH-CPD (x%) where x%
means that a CPD is constructed for top x% of the nodes in
the contraction hierarchy. Both CH-CPD and CH+L use 4
landmarks for distance estimates (adding more did not im-
prove performance).

For further comparison we also consider two recent hub-
labeling algorithms, PHL and SHP, as described in (Li et al.
2017) and using implementations from those authors5. PHL
(Pruned Highway labeling) (Akiba et al. 2014) is a popu-
lar and efficient hub labeling method for shortest distance
queries on road networks. While most hub labeling algo-
rithms use nodes as hubs, PHL differs mainly in that it uses
highway paths as hubs and the distances are maintained to
these highways. SHP (Significant path based Hub Push-
ing) (Li et al. 2017) is another state-of-the-art hub labeling
approach for road networks. It employs ideas similar to PHL
but considers the vertices on “significant paths” as hubs.
Such vertices are simply ranked by the multiplication of ver-
tex degree and descendant size difference. To efficiently re-
cover shortest paths, both PHL and SHP store predecessor
nodes along with each hub label as suggested in (Li et al.
2017). While this increases the index size, it significantly
speeds up the shortest path recovery time.

Queries: For experiments, we consider a variety of road
networks taken from the 9th DIMACS challenge.6 We gen-
erate queries as suggested in (Wu et al. 2012): each road
network is discretised into a 1024 × 1024 grid with cell
side length l. We randomly generate ten groups of queries
such that i-th group contains 1000 (s, t) pairs with Eu-
clidean distance between them within 2i−1× l to 2i× l, thus

3https://bitbucket.org/dharabor/pathfinding
4https://github.com/RoutingKit/RoutingKit
5http://degroup.cis.umac.mo/sspexp
6http://users.diag.uniroma1.it/challenge9/



Type Name #V #E
Build Time (Mins) Memory (MB)

CH-CPD Competitors CH-CPD Competitors
20% 40% 60% 80% 100% CPD CH PHL SHP 20% 40% 60% 80% 100% CPD CH PHL SHP

D
i
s
t
a
n
c
e

NY 264k 733k 0.361 0.732 1.177 1.867 2.945 8.763 0.238 0.601 0.441 70 104 183 271 338 219 29 411 449
BAY 321k 800k 0.226 0.470 0.862 1.728 3.131 13.365 0.139 0.348 0.307 60 80 132 183 213 144 29 302 359
COL 435k 1057k 0.331 0.793 2.206 4.381 7.460 23.072 0.186 0.705 0.589 86 155 217 268 337 239 38 495 593
FLA 1070k 2712k 3.114 8.408 19.777 36.005 56.241 148.572 0.435 1.850 1.713 189 328 542 755 984 692 97 1325 1586
NW 1207k 2840k 2.004 10.535 25.104 46.132 73.629 204.249 0.433 2.621 2.548 205 424 665 868 1100 818 100 1515 2008
NE 1524k 3897k 5.275 24.142 56.436 108.295 167.397 342.805 1.179 7.892 7.049 436 836 1438 2160 2708 1998 149 3453 4434

Tr
av

el
Ti

m
e

NY 264k 733k 0.274 0.964 1.789 2.241 3.000 11.027 0.157 0.184 0.169 63 88 156 222 277 188 28 161 198
BAY 321k 800k 0.152 0.303 0.609 1.096 1.831 13.843 0.090 0.117 0.141 50 63 102 137 157 106 28 116 180
COL 435k 1057k 0.207 0.496 1.259 2.511 4.243 25.378 0.103 0.193 0.219 67 117 158 193 241 174 36 180 250
FLA 1070k 2712k 2.405 5.100 10.880 21.383 33.971 166.378 0.289 0.709 0.751 152 261 405 567 706 514 92 526 727
NW 1207k 2840k 1.201 5.551 13.804 26.454 42.560 259.305 0.319 0.714 0.860 168 346 509 631 789 586 98 568 835
NE 1524k 3897k 3.211 12.595 27.293 52.753 85.102 436.746 0.587 1.436 1.510 325 602 1037 1599 2028 1597 141 995 1350

Table 3: Number of vertices (#V) and edges (#E) in maps, build time in Mins, and memory in MB for CH-CPD and competitors.

Type Name
Stat CH-CPD (20%) CH-CPD (40%) CH-CPD (60%) CH-CPD (80%) CH-CPD (100%)
#C 0% 0.25% 0.5% 1% 0% 0.25% 0.5% 1% 0% 0.25% 0.5% 1% 0% 0.25% 0.5% 1% 0% 0.25% 0.5% 1%

D
i
s
t
a
n
c
e NY

#CE 0 13.481 12.833 12.603 0 12.353 12.238 12.196 0 12.702 12.623 12.653 0 13.220 13.201 13.240 0 12.446 12.451 12.487
TC 0 0.002 0.005 0.008 0 0.009 0.018 0.029 0 0.018 0.030 0.063 0 0.031 0.059 0.123 0 0.050 0.093 0.185
TT 0.384 0.121 0.123 0.120 1.506 0.512 0.494 0.556 3.188 0.939 0.939 0.999 5.963 1.570 1.629 1.707 9.912 2.561 2.707 2.812

NE
#CE 0 15.642 15.219 15.092 0 17.898 17.699 17.687 0 16.581 16.550 16.594 0 16.271 16.260 16.309 0 16.279 16.278 16.319
TC 0 0.057 0.118 0.219 0 0.276 0.399 0.654 0 0.492 0.931 1.642 0 0.893 1.770 3.328 0 1.327 2.791 5.065
TT 11.457 4.393 4.096 4.416 49.095 26.081 22.963 24.443 125.745 57.157 55.256 56.816 255.027 98.660 107.115 99.024 382.009 150.067 166.218 148.021

T
r
a
v
e
l
T
i
m
e

NY
#CE 0 4.967 5.050 4.969 0 6.043 6.005 6.004 0 5.884 5.871 5.877 0 5.384 5.381 5.385 0 5.258 5.259 5.263
TC 0 0.003 0.005 0.008 0 0.009 0.015 0.031 0 0.020 0.036 0.075 0 0.035 0.066 0.125 0 0.052 0.105 0.207
TT 0.392 0.115 0.117 0.129 1.615 0.801 0.806 0.780 3.993 1.562 1.632 1.670 7.435 1.977 2.084 2.223 12.335 2.676 2.843 2.907

NE
#CE 0 6.035 5.999 5.986 0 5.857 5.850 5.758 0 5.613 5.545 5.545 0 5.607 5.553 5.555 0 5.577 5.576 5.573
TC 0 0.064 0.129 0.269 0 0.298 0.506 0.791 0 0.563 1.053 1.940 0 1.002 1.968 3.738 0 1.713 3.019 6.202
TT 13.433 2.374 2.624 2.516 60.091 12.010 12.007 12.027 155.598 24.821 26.705 28.022 306.740 48.411 52.166 52.877 488.504 81.968 84.515 82.648

Table 4: The average number of cache nodes expanded (#CE), the time in minutes for building cache (TC) and total building
time (TT) for constructing CH-CPD. We show the number of cached nodes (#C) in range of 0 to 1% of the total nodes.

10,000 queries in total. In discussions, we distinguish be-
tween path queries, which asks for a shortest (uncontracted)
path from start to target, and distance queries, which ask
only for the length. Individual queries are run 10 times; we
omit the best and worst run and average all the rest.

All algorithms are implemented in C++ and compiled
with -O3 flag. We use a 32 cores Nectar research cloud with
64GB of RAM and Ubuntu 18.04 LTS (Bionic) amd64.

Preprocessing Cost and Space
We first compare various methods for shortest path query
processing in terms of the preprocessing time required and
the size of the data structures required to support the method.
Table 3 compares the CH-CPD approaches where the CPD
is produced on the top 20%, 40%, 60%, 80%, or all the nodes
versus other techniques. Note that the costs for CH-CPD in-
clude all the costs for constructing and storing the contrac-
tion hierarchy. We make use of the distance tables enhance-
ment introduced earlier to speed up the CH-CPD preprocess-
ing by caching the top 0.5% of the nodes.

We use road maps from the DIMACS challenge using ei-
ther the distance weights or the travel time weights (which

we will see are surprisingly different). Unsurprisingly, the
contraction hierarchy is the cheapest approach to both com-
pute and store. Both PHL and SHP are more expensive to
compute, but only by a few factors. The CPD approaches
are the most expensive to compute; what is interesting is that
the CPD on the original graph is more expensive to compute
than on the contraction hierarchy, since for the CH-CPD we
can restrict to Up-Down paths and make use of caching in
the preprocessing. The full CH-CPD is around 50% larger
than the CPD on the original graph even though it is cheaper
to compute. Partial CH-CPDs are significantly cheaper to
both compute and store than the full CH-CPD, reaching the
same ballpark compute times as PHL and SHP at 20%. What
is somewhat surprising is that the full CH-CPD storage costs
are significantly smaller than both PHL and SHP on the Dis-
tance maps, while in the Travel Time maps they tend to be
larger than PHL and around the same size as SHP.

Overall, we see that the storage requirements for CH-
CPDs are not overwhelming, and indeed can be smaller than
the competitors. The use of partial CH-CPDs means we can
trade off storage requirements with query time.

Table 4 shows some results about the effectiveness of the
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Figure 5: Runtime comparisons on the six road network Distance and Travel Time graphs. The x-axis shows the percentile
ranks of path queries sorted based on actual distances between start and target.

caching preprocessing enhancement. The table shows the
average number of cached nodes expanded when building
CH-CPDs for various proportions of the contraction hierar-
chy, as well as the time to build the cached data, and the
total build time to build the (partial) CH-CPD, for the small-
est and largest map (not including the CH building time
as in Table 3). We vary the number of cached nodes to be
0% (no distance tables enhancement), and 0.25%, 0.5% and
1% of the total number of nodes in the map. Clearly the
caching preprocessing enhancement is highly effective, re-
ducing construction times to one third, and by more on larger
maps. The percentage of cached nodes does not make that
much difference, as clearly the number of expanded cached
nodes hardly changes. The results on the other maps are sim-
ilar. Note that this approach can be adapted to improve the
preprocessing of traditional CPDs as well. Although not re-
ported here, we observed improvement by a few factors for
constructing traditional CPDs by caching the distances on
the same top-n% of nodes. But the choice of which nodes
to cache is important to the success of the approach. With
randomly chosen cache nodes, we observed a slowdown as
it incurs a large number of distance updates in the order of
|CE| × |V |. Our optimisation is not limited by certain or-

dering and we believe that other intuitive lexical orderings
(e.g., nodes having high ”reach”) may further improve pre-
processing of traditional CPDs.

Query Processing Time
Next we compare path query processing times of the var-
ious methods. Figure 5 shows cactus plots for each com-
peting algorithm on 12 different graphs. Note that for each
CH-based method the path query time includes path un-
packing. Examining the results we can see that in terms of
worst case performance contraction hierarchies are particu-
larly important. The top three methods in the larger maps
are CH-CPD, CH+L and CH. Other methods can be faster
for some queries, since they avoid path unpacking, but by
the time we reach 100% of queries solved, these methods
dominate. Interestingly, Landmarks are significantly benefi-
cial for CH on the Distance maps while making almost no
difference on the Travel Time maps. Basic CPD is very good
for queries with short paths but becomes less competitive
as more extractions are required. CH-CPD is faster than all
other approaches on all maps; the combination of no search
together with few lookups finds optimal paths very quickly.

In Table 5, we extend the comparison to consider short-



Type Name
Distance Queries Path Queries

CH-CPD Competitors CH-CPD Competitors
20% 40% 60% 80% 100% CH CH+L PHL SHP 20% 40% 60% 80% 100% CPD CH CH+L PHL SHP

D
i
s
t
a
n
c
e

NY 12.826 10.992 7.568 5.323 3.230 28.330 15.643 0.919 1.013 23.165 20.831 17.186 13.667 11.419 26.375 38.641 25.581 25.359 26.759
BAY 10.176 9.006 6.692 4.496 2.792 17.992 11.592 0.692 0.722 19.775 18.900 16.674 13.751 11.784 22.852 28.686 20.850 25.876 23.895
COL 12.958 10.183 8.428 5.803 3.640 29.426 17.277 0.940 0.873 29.060 26.332 23.371 20.183 17.014 39.751 45.998 33.960 49.809 45.146
FLA 18.909 15.655 11.686 7.911 5.020 31.099 21.501 1.187 1.038 49.122 44.655 39.606 34.627 30.619 70.860 63.634 50.677 76.544 80.532
NW 17.527 14.867 11.408 7.681 4.991 30.898 19.445 0.980 1.052 41.866 38.819 35.052 29.844 26.280 76.620 57.423 44.283 81.401 89.203
NE 25.971 19.060 14.462 8.910 6.436 53.536 30.971 1.820 1.762 62.335 51.880 47.270 40.313 37.697 124.367 90.845 65.569 105.197 138.857

T
r
a
v
e
l

T
i
m
e NY 10.525 9.772 6.810 4.720 2.551 16.527 11.832 0.553 0.565 19.158 18.818 14.830 12.845 9.526 18.234 25.265 20.064 18.315 14.926

BAY 9.147 7.785 5.772 3.750 2.306 12.232 10.547 0.499 0.485 19.058 17.360 15.106 12.540 10.611 19.147 21.636 19.970 22.861 16.786
COL 10.282 8.556 6.047 4.888 3.008 14.631 12.500 0.540 0.505 26.221 24.483 20.850 19.967 17.261 34.758 31.544 29.430 39.852 33.473
FLA 14.311 12.518 10.148 6.777 4.187 17.430 15.327 0.592 0.578 38.402 35.681 32.733 29.112 25.523 54.153 42.209 40.444 51.897 49.206
NW 15.828 13.337 10.289 7.247 4.192 18.788 16.581 0.569 0.550 41.388 39.318 36.031 32.223 27.949 55.378 44.970 41.713 54.710 46.612
NE 19.594 15.389 11.328 7.631 5.506 27.098 21.652 0.698 0.646 49.708 43.221 37.278 32.087 31.222 79.938 58.037 51.549 59.335 53.164

Table 5: Running time comparison for distance and path queries, we report average time (µs) between CH-CPD and competitors.

Type Distance Travel Time

Name Stat
CH-CPD Competitors CH-CPD Competitors

20% 40% 60% 80% 100% CPD CH CH+L 20% 40% 60% 80% 100% CPD CH CH+L

NY

#Generated 62.630 52.101 18.985 6.978 - - 301.529 123.441 57.173 45.269 20.219 7.464 - - 161.916 93.249
#Expanded 22.049 17.855 7.415 3.009 - - 101.302 41.469 24.079 18.549 8.809 3.563 - - 71.815 40.289
CPD Usage 68.41% 74.97% 90.57% 95.50% 100% 100% - - 66.31% 74.66% 89.87% 95.09% 100% 100% - -
|Vs| 3.304 2.585 2.136 1.384 1 1 - - 2.512 2.087 1.999 1.320 1 1 - -
|Vt| 3.290 2.567 2.088 1.393 1 1 - - 2.481 2.062 1.973 1.342 1 1 - -
#Path 2.910 1.960 1.539 1.147 1 1 - - 2.051 1.652 1.577 1.173 1 1 - -

#FirstMove 25.530 18.555 15.464 11.163 9.592 191.742 - - 15.330 14.364 15.042 11.517 9.947 168.589 - -

NE

#Generated 87.953 51.536 21.333 1.158 - - 503.155 208.474 73.962 42.742 19.217 1.154 - - 197.155 121.689
#Expanded 29.722 18.135 7.843 0.628 - - 149.765 62.799 32.072 19.020 8.714 0.637 - - 89.644 54.048
CPD Usage 81.49% 89.97% 96.93% 99.98% 100% 100% - - 77.89% 89.45% 96.24% 99.98% 100% 100% - -
|Vs| 4.317 3.169 2.282 1.209 1 1 - - 2.740 2.353 1.878 1.219 1 1 - -
|Vt| 4.374 3.187 2.240 1.230 1 1 - - 2.761 2.351 1.879 1.232 1 1 - -
#Path 4.001 2.438 1.647 1.090 1 1 - - 2.288 1.841 1.480 1.119 1 1 - -

#FirstMove 41.307 26.506 19.670 13.548 12.426 607.931 - - 20.560 19.469 17.757 14.442 12.964 520.366 - -

Table 6: Average number of nodes #Generated and #Expanded by each algorithm. CPD Usage corresponds to % of queries for
which both A* searches expand at least one CPD node (and hence end up using CPD). For queries that use CPD, we report
average |Vs| (resp. |Vt|) that denote # of CPD nodes expanded from s (resp. t), and average #Path and #Firstmove extractions.

est distance queries and also include the partial CH-CPDs.
Unsurprisingly the distance based methods PHL and SHP
are far superior for distance queries, since the other meth-
ods essentially find the shortest path and then calculate its
length (although they can avoid path unpacking). We can
see that the partial CH-CPDs roughly double the query time
when moving to a 20% CH-CPD, where the query times are
roughly still slightly ahead of CH+L and still significantly
better than PHL and SHP for path retrieval.

Table 6 provides more insights. CH+L performs signifi-
cantly better than CH due to the smaller number of nodes
generated and expanded using the landmark heuristic. As
shown by CPD Usage, CH-CPD does not always need to
use the CPD (when the optimal path does not pass through
CPD nodes). For such queries, CH-CPD essentially is the
same as CH+L. Note that the numbers of CPD nodes ex-
panded from start (|Vs|) and target (|Vt|) are pretty small.
Furthermore, the number of paths extracted using CPD is

also significantly smaller than |Vs| × |Vt| which shows the
effectiveness of our pruning rules that also help significantly
reduce the number of first move extractions. Compared with
the CPD on the original graph, the full CH-CPD requires a
significantly smaller number of first move extractions which
explains its superior performance.

Conclusion

We show how to use Compressed Path Databases and Con-
traction Hierarchies to generate the fastest shortest path
query retrieval method we are aware of. The use of Con-
traction Hierarchies also allows us to cache information for
the CPD construction that actually makes CPD construction
significantly faster. We also show how we can tradeoff pre-
processing time and space with path retrieval time by build-
ing partial CPDs. While path retrieval now requires search it
is still highly competitive with other methods.
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