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Abstract—In this paper, we present energy-aware scheduling
for Serverless edge computing. Energy awareness is critical since
edge nodes, in many Internet of Things (IoT) domains, are meant
to be powered by renewable energy sources that are variable,
making low-powered and/or overloaded (bottleneck) nodes un-
available and not operating their services. This awareness is
also required since energy challenges have not been previously
addressed by Serverless, largely due to its origin in cloud comput-
ing. To achieve this, we formally model an energy-aware resource
scheduling problem in Serverless edge computing, given a cluster
of battery-operated and renewable-energy powered nodes. Then,
we devise zone-oriented and priority-based algorithms to improve
the operational availability of bottleneck nodes. As assets, our
algorithm coins terms “sticky offloading” and “warm scheduling”
in the interest of the Quality of Service (QoS). We evaluate our
proposal against well-known benchmarks using real-world imple-
mentations on a cluster of Raspberry Pis enabled with container
orchestration, Kubernetes, and Serverless computing, OpenFaaS,
where edge nodes are powered by real-world solar irradiation.
Experimental results achieve significant improvements, up to
33%, in helping bottleneck node’s operational availability while
preserving the QoS. With energy awareness, now Serverless can
unconditionally offer its resource efficiency and portability at the
edge.

Index Terms—edge computing, Serverless, function-as-a-
service, energy-aware, scheduling

I. INTRODUCTION

Edge computing is generally understood as a cluster of tiny
computers, i.e., edge nodes, connected with a central, and pre-
sumably more powerful, computer as the gateway/controller
at the edge of network [23]. Among all proposed architec-
tures [23], edge computing platforms that are fully or partially
independent of the cloud are becoming increasingly popular,
which are sometimes called mist computing, extreme edge or
things-edge in the literature [16], [23]. This architecture is
unique due to the hybrid role of edge nodes—simultaneous
task generation (sensing/actuation) and computation—and,
more importantly, their power supply challenges. Single-board
Computers (SBCs) such as Raspberry Pis (Pis) have constantly
been used as edge nodes in extreme edge architecture, mainly
due to their low-power ARM architecture [7], [8].

In remote applications where extreme edge architecture is
the platform of choice, edge nodes are generally powered
by electricity generated from local renewable energy sources
and local energy storage devices. In practice, this architecture

is home to the IoT applications such as Smart City, Smart
Manufacturing, and, particularly, Smart Farming and Forestry.

However, renewable energy sources are known to be unsta-
ble [11], intermittent, unpredictable [14] or simply variable.
The variability is also expected in load generation on IoT
devices. If such variability is disregarded, it results in the un-
availability of some edge nodes—we call them bottlenecks—
due to power outage, overloading, and node failure while
others waste their excess or unused energy [12]. A bottleneck
can significantly affect the flow of a system. In edge clusters,
ignoring bottleneck nodes severely increases the difference
between the operational availability—the time duration a node
is up and running—of bottleneck nodes than that of other
nodes. This ignorance prohibits the seamless operation of the
entire cluster where a bottleneck node will leave its servicing
area uncovered during its unavailability [15].

Given this issue, edge systems are desperate for energy
efficiency mechanisms while demanding the preservation of
the Quality of Service (QoS) [16]. As an incentive of edge,
this prospective mechanism can benefit from enabled resource
sharing among edge nodes, by computation offloading, to
tackle the issue [23]. Offloading allows migrating computa-
tion, e.g., services, to peers. Hence, a resource scheduler that
dynamically considers the energy state of bottleneck nodes and
migrates services is demanded. However, mounting all energy
variability challenges to merely a scheduler appears naive
since the deployment (monolithic or microservices), scalability
(single unit or allowing multiple units), and portability of
services play critical roles.

Serverless Computing has recently attracted special atten-
tion as the edge computing facilitator [5]. Serverless offers
simplified deployment, computing efficiency through scala-
bility, and most importantly, portability, under the banner of
Function-as-a-Service (FaaS) [5]. Serverless decomposes the
application into microservices and containerizes them [5]. The
finished product is one or a set of Functions, often wrapped
as containers. Serverless places a function on a node and
dynamically auto-scales required resources according to the
demand, even to zero, by adjusting the number of instances.
Functions are often stateless, and function scaling results in
new identical instances or so-called Replicas. The key ques-
tion is how to achieve energy-aware resource scheduling in
Serverless edge computing to improve operational availability
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Fig. 1: A schematic view of the system

while preserving QoS on renewable energy- and battery-
powered devices? Addressing this is not trivial since Serverless
platforms are natively designed for cloud computing [5], hence
agnostic to energy conditions.

Energy-aware resource scheduling at Serverless edge com-
puting has not been considered previously [18]. Big IT in-
dustries hesitate to recognize the energy necessity, despite
initial steps in redesigning edge-friendly Serverless platforms
such as Amazon IoT Greengrass and Microsoft Azure IoT
Edge [18]. Technical limitations also include: nodes should
actively collaborate while hosting their functions; nodes with
a high level of energy availability may receive an excessive
number of peers’ functions, making them prone to failure;
offloading functions to peers is not free of cost as it imposes
communication costs, and nodes have a bounded capacity and
cannot accept any given computation while the scheduler is
desperate to place all functions.

To address the above challenges, we make the following
key contributions:

• the problem of energy-aware resource scheduling for re-
newable energy- and battery-powered edge nodes running
on a Serverless edge computing is formally formulated;

• an energy-aware resource scheduling algorithm is de-
signed and implemented that works in a zone- and
priority-based manner with features such as “warm
scheduling” and “sticky offloading”;

• a real-world Serverless edge prototype is implemented
using Kubernetes and OpenFaaS on Raspberry Pis; and

• the evaluation of proposed scheduling is performed by
developing a realistic containerized use case of IoT
applications from the Smart Farming domain and by real
traces of renewable energy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A schematic view of the motivating system is shown in
Fig. 1 where edge nodes are connected together and to a
controller node. Edge nodes are powered by renewable energy
sources and storage devices (e.g., batteries) with an unequal
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Fig. 2: Saving energy by offloading—2 experiments using 2
Pis for 15 minutes where Node 1 generates tasks and hosts
the function locally versus offloading the function to Node 2.

energy generation rate. They are equipped with sensing ca-
pability generating IoT task requests at variable and irregular
rates. A Serverless computing platform orchestrates resources
at the edge and assigns tasks to the corresponding function.
A controller performs the role of the gateway and scheduler
simultaneously. The controller gateway distributes requests
to its corresponding function for execution. The scheduler
monitors nodes’ State of Charge (SoC) and exploits offloading
to place functions on well-powered nodes. For example, in
Fig. 1, functions of node d2 are moved to d3 as this node
suffers from low energy density. Our early observations, as
shown in Fig. 2, demonstrate that the offloading technique can
considerably save energy (by up to 29%), without imposing
additional overhead. For instance, a bottleneck node in pro-
duction, enabled with Industry 4.0, can improve the production
line by 29%.

A. System Model

We discretize the time into equal time slots defined as T =
{t | t ∈ [0, T ], (t + 1) − t = ∆t seconds} and the scheduler
revisits the placements at the beginning of each time slot.
Edge Nodes: A set of nodes defined as D = {di | i ∈ [1, n]}
is considered as a cluster of edge devices connected with
surrounding IoT sensors in a star-like network. A central con-
troller which is excluded from D and is not necessarily pow-
ered by renewable energy, performs management, scheduling,
etc. SoC and resource (CPU) capacity are among major char-
acteristics of di which are later used for scheduling decisions.
SoC represents the actual battery charge on nodes at each
time-slot and is defined by S = {sit | i ∈ [1, n], t ∈ T, ϑ ≥
sit ≥ 0} where ϑ indicates the maximum battery charge. SoC
depends on both energy input and energy consumption. Let
R = {rit | i ∈ [1, n], t ∈ T, rit ≥ 0} denote the energy input
(e.g., renewable energy). Energy consumed on nodes during
t is denoted as E = {eit | i ∈ [1, n], t ∈ T, eit ≥ 0} which
depends on executed workload.

Resource capacity of nodes in Million Instruction Per Sec-
ond (MIPS) is defined as C = {cit | i ∈ [1, n], t ∈ T, cit ∈
[0, ω]} where ω indicates the maximum capacity. Defining an
exclusive set for resource capacity allows for heterogeneity
considerations. Note that S, R, E, and C represent values per
di at time slot t ∈ T.
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Application & Workload: An IoT application normally runs
multiple microservices. Let A = {aj | j ∈ [1,m]} define
a set of microservices. An edge node owns, hosts and runs
a full set of microservices in A that are identical across all
nodes. The rate at which workload (sensor data/tasks/requests)
is generated for microservices at different nodes at different
time slots is modelled as Λ = {λi,jt | i ∈ [1, n], j ∈
[1,m], t ∈ T, λi,jt ≥ 0}. Each task constitutes a certain amount
of processing in Million Instructions (MI) to be executed,
that is expressed as M = {µj | j ∈ [1,m], 0 ≤ µj∈R}.
The workload modelling is used later on as the basis for the
estimation of the number of required function replicas.
Serverless Functions: The unit of resource scheduling in our
model is a function in Serverless. We define a set of functions
as F = {f i,j | i ∈ [1, n], j ∈ [1,m]} where function f i,j

executes tasks of microservice aj owned by node di. Function
f i,j requires a certain amount of resources to be deployed on a
node. The required resource capacity is defined as V = {vj |
j ∈ [1,m], vj ∈ [0, ω]}, where vj is capped at the node’s
maximum capacity ω.
Function Replicas (instances): Given the enabled auto-
scaling in Serverless, f i,j may have a varied number of
function replicas at t, capped at ℵ, depending on the incoming
workload. Hence, set Γ = {γi,jt | i ∈ [1, n], j ∈ [1,m], t ∈
T, γi,jt ∈ [0,ℵ]} defines the required replica per function
by evaluating the corresponding microservice workload over
computation capacity. The number of replicas of aj on di

at t is measured as γi,jt = min
(
ℵ,
⌈λi,j

t ×µ
j

vj

⌉)
that can get

a value of 0–ℵ depending on the expected workload. In an
optimal offline model with future knowledge, Γ is assumed
to be known. If di is down at t, then γi,jt = 0 replicas are
deployed in the system. In Serverless, zero replica, or so-called
scaled to zero functions, consume zero capacity of the node.

For replica-level modelling, we upgrade F to include replica
indexes, denoted by F = {f i,j,kt | i ∈ [1, n], j ∈ [1,m], t ∈
T, k ∈ [1, γi,jt ]} where k indicates the k-th replica.
Function Placement: Functions’ replicas can either be placed
on their own node locally, or be offloaded to peer edge nodes,
upon the scheduler decision. Given SoC sit on di at time slot
t, the scheduler sets local and foreign function placements
per nodes. Denote local placements as Ψ = {ψi,jt | i ∈
[1, n], j ∈ [1,m], t ∈ T, ψi,jt ≥ 0} and foreign placements
as Θ = {θi,jt | i ∈ [1, n], j ∈ [1,m], t ∈ T, θi,jt ≥ 0}.
This differentiation is particularly essential, as we involve
communication overheads in the case of offloading functions
for both sender and receiver. That is, if f i,j,kt is offloaded
to dq , a sending cost for di and a receiving cost for dq is
applied. A cost rate per microservice for either one is defined
as O =

{
oj,h | j ∈ [1,m], h ∈ {send, recv}, oj,h ∈ [0, 1]

}
,

where oj,h, h = send or h = recv, specify the overhead
energy cost imposed by offloading function f i,j,kt and hosting
peers function f i,j,kt , respectively. This cost is mutated into
energy usage. Note that local placement ψi,jt of replicas of a
function is bound to γi,jt , so the constraint ψi,jt ≤ γi,jt must
be maintained by scheduler.

Node Availability (Up or Down): Nodes generate tasks and
run functions only if they are up, i.e., if they satisfy low energy
threshold sit ≥ ϕ. Otherwise, they are technically excluded
from hosting any local or foreign function. Node availability
(status) is denoted by X =

{
xit | i ∈ [1, n], t ∈ T, xit ∈

{0, 1}
}

where x = 0 means the node is unavailable, or down,
during time slot t, and vice versa. Given that, nodes’ binary
status xit at t are represented as follows:

∀di ∈ D : xit =

{
1 if sit ≥ ϕ
0 else

(1)

where a node’s SoC sit merely depends on the SoC at the
previous time slot sit−1, renewable energy input rit, and
consumed energy eit at time slot t.

∀di ∈ D : sit = min
(
ϑ,max(0, sit−1 + rit − eit)

)
(2)

where SoC can vary between 0 and ϑ. Assuming that renew-
able inputs is known, the energy consumed eit depends on the
hosted functions and for all di ∈ D can be computed as:

eit =

(
cit
ω
× p+

( m∑
j=1

(
oj,send × (γi,jt − ψ

i,j
t )
)

+

m∑
j=1

(oj,recv × θi,jt )

))
×∆t (3)

which takes into account: (a) direct usage and (b) offloading
overhead. For the direct usage, occupied resources are mea-
sured by cit

ω and multiplied by a power consumption rate p.
The occupied resources of a node, as a key element in eit
measurements, is obtained by cit =

∑m
j=1

(
(ψi,jt + θi,jt )× vi

)
.

For the offloading overhead, energy consumption is calculated
the send (oj,send) and receive (oj,recv) overhead multiplied by
the offloaded functions (γi,jt −ψ

i,j
t ) and by the received foreign

functions (θi,jt ), respectively. This overhead measurement is
performed for each microservice j. The power consumed by
(a) and (b) is multiplied by the length of time slot, ∆t, to
obtain energy.

B. Problem Formulation

The resource scheduling problem is to dynamically adjust
the placement of functions across the cluster to increase nodes’
operational availability and reduce availability variance among
the nodes, mainly in favor of low-powered and overloaded
nodes, we call them bottleneck. This is particularly important
due to the fact that if an energy-agnostic scheduler is adopted,
such nodes are prone to run out of energy, while well-
powered and/or underutilized nodes may waste their energy.
The imbalance in power and load distribution between nodes is
inevitable in practice [13]. The problem falls in the category of
Bottleneck Generalized Assignment Problems (BGAP) [19].
Hence, the objective function (4) maximizes the operational
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availability of the edge node with the minimum availability,
formulated as:

max min
i∈[1,n]

T∑
t=0

xit︸ ︷︷ ︸
T,D,X,S,R,E,A,Λ,M,F,Γ,V,Ψ,Θ,O,C

(4)

subject to:( n∑
i=1

ψi,jt + θi,jt

)
=
( n∑
i=1

γi,jt

)
∀t ∈ T,∀aj ∈ A (5)

γi,jt = xit ×min
(
ℵ,
⌈λi,jt × µj

vj

⌉)
∀t ∈ T,∀di ∈ D,∀aj ∈ A

(6)(
ci =

m∑
j=1

(
(ψi,jt + θi,jt )× vj

))
≤ (xit × ω)∀t ∈ T,∀di ∈ D

(7)

At any given t, constraint (5) specifies that the scheduler
must not leave any function replica unattended; constraint (6)
defines that if a node is down, scheduling of its microservices
is not considered, i.e., scale to zero; constraint (7) defines that
the sum of the capacity required for placed functions must not
exceed the node maximum capacity ω, either local or foreign,
and inclusion of xit forces no placement on down nodes.

Solving this problem optimally appears difficult, as it is
known NP-Hard [19]. Also, it assumes that renewable energy
input and incoming workload at each t ∈ T, are known to
the scheduler in advance, which are difficult to achieve in
practice. Hence, in the following section, we propose a greedy
algorithm that does not consider such assumptions.

III. ENERGY-AWARE SCHEDULING

In this section, we propose a greedy algorithm inspired
by a bin packing idea [21] that encompasses the follow-
ing improvements: (a) Encouraged local placements: local
placement of functions is favorable if possible and if there
exists sufficient SoC to reduce the offloading overhead. (b)
Prioritized placements: we basically form zones of relatively
similarly powered nodes and adopt a rigorous prioritizing
scheme to handle efficient placements. (c) Beneficial offload-
ing: Offloading functions only to a zone with a significantly
better SoC. (d) Warm scheduling; in cloud scenarios, to avoid
cold start of functions, a function is invoked by sending
fake requests, known as warm functions [5]. Inspired by
that user-driven technique, we introduce a scheduler-driven
technique warm scheduling that pre-schedules a function of
a down node on peers with extra/unused capacity to make
functions serviceable immediately, in case its owner node
becomes up; in cold scheduling, a function from a recharged
node has to remain unscheduled until the next scheduling
round. (e) Sticky offloading: we introduce sticky offloading to
mitigate recurring movements of a function over the course of
offloading decisions.

The key added incentive by Serverless in this approach is
that the scheduler is enabled to decide on placements in a
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Fig. 3: A demonstration of placements

function replica level as they are made stateless in Serverless
and hence are made independently portable. This facilitates
fine-grained resource migrations, the key to precise efficiency.
Contrary, conventional monolithic deployments typically fail
to achieve this granularity, mainly due to coarse-grained
portability. Even general service-oriented deployments require
resolved dependency between microservices to be adaptable
with such fine-grained scheduling [5], [13]. Another significant
incentive is that function replicas are added/removed by em-
bedded auto-scaling in Serverless, dynamically. The scheduler
only decides on the placement thereof.

The details of the improved greedy scheduler is discussed in
the following subsections. The scheduler is executed at regular
intervals and updates function placements dynamically.

A. Function Scheduling

We first introduce the concept of zones, driven by
nodes’ SoC, denoted by Z =

{
zit | i ∈ [1, n], t ∈

T, zit ∈ {wellPowered, vulnerable, lowPowered,
powerless}

}
where zit stands for node i’s zone at t. The

entire range of SoC, i.e., [0, ϑ], is divided into four non-
overlapping zones. A node belongs to a zone zit if its SoC
sit is within the range belonging to the zone.

Algorithm 1 shows the process of function placements at
any given time t. Initially, no function is allocated to any
node, node capacities are reset to the maximum capacity ω,
nodes’ SoC are updated based on their current monitoring,
and nodes’ zones are assigned accordingly (Lines 1–4). Nodes
are sorted in descending order of their SoC. Functions are
sorted based on their owner node’s zone priority. Zone pri-
orities are ordered from the highest to lowest as follows:
(1) wellPowered; (2) lowPowered; (3) vulnerable;
and (4) powerless. This means functions of a node in the
wellPowered zone are placed first, which guarantees their
local placement. Then functions of nodes in desperate need
of power, i.e., lowPowered are placed. The functions of
vulnerable nodes are placed afterwards. Finally, the func-
tions of powerless nodes are placed under warm scheduling.
The functions within each zone are sorted by the owner’s
SoC ascendingly, but the opposite applies for functions in
powerless zone (Lines 5–6). The reason behind this is that
we speculate that nodes in a powerless zone with a higher
SoC are more likely to become operational again in the next
scheduling round.
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Algorithm 1: Energy-Aware Function Scheduling
Data: D,C, S, F, Z, V
Result: F,C

1 F ← {F | f i,j,kt ∈ F, k = null}
2 C ← {C | cit ∈ C, cit = ω}
3 S ← {S | sit ∈ S, sit = current SoC}
4 Z ← {Z | zit ∈ Z, zit ∝ sit}
5 sort (D descendingly by S)
6 sort (F ascendingly by owner’s zone priority Z, and

within zones ascendingly by owner’s S, but powerless)
7 for f i,j,kt in F do
8 place← null
9 if zit ∈ {wellPowered} then

10 place← dit . local placement

11 else
12 cands← {D | dqt ∈ D, (z

q
t ∈

{wellPowered}) ∨ (zqt ∈
{vulnerable} ∧ zit /∈ {vulnerable})}

13 place←
Offloading(D,F, S,C, V, cands, f i,j,kt )

14 if place = null then
15 place← di . local placement

16 f i,j,kt ← place
17 if place = di then
18 cit ← cit − vj
19 else
20 cqt ← cqt − vj

21 return F,C

The scheduler iterates over the functions replicas and sets
their new placements by setting place (Lines 7–20). For a
given function f i,j,kt , if it belongs to a wellPowered node,
it is placed locally (Line 9–10), as for d1 in Fig. 3. Otherwise,
a set of candidate nodes (cands) are selected and delivered to
the Offloading algorithm (more details in Section III-B)
to determine the placement (Lines 12–13). Candidates always
belong to zones with higher SoCs than that of the function’s
owner. Also, only wellPowered and vulnerable nodes
can be the placement destinations, as for d1, d2, d3 in Fig. 3, to
practise beneficial offloading. If the Offloading algorithm
cannot find a suitable node to offload f i,j,kt , it is placed locally
(Lines 14–15), e.g., f3,j in Fig. 3. After the new placement is
set for f i,j,kt , its required capacity is deducted from the hosting
node’s capacity (Lines 17– 20).

B. Function Offloading

Given a list of candidate nodes cands, the offloading
algorithm (Algorithm 2) attempts to determine the best place-
ment for f i,j,kt on peer nodes. The algorithm first allows for
StickyOffloading (Lines 2–3). The sticky offloading is
a mechanism (more details in Section III-C) that ensures that
the placements are sticky in the sense that a function offloaded
to a node is not offloaded again to a different node in future

Algorithm 2: Function Offloading

Data: D,F, V, S, Z, cands, f i,j,kt

Result: place
1 place← null
/* if it was offloaded earlier, call sticky */

2 if f i,j,kt 6= di then
3 place←

StickyOffloading(D,F, S,C, V, cands, f i,j,kt )

4 if place = null then
5 for candq ∈ cands do

/* verify available capacity on node */

6 if cqt − Reservation(candq, vj) ≤ vj then
7 ignore candq

/* place on the candidate node */

8 if zit ∈ {lowPowered, vulnerable} then
9 place← dq

/* verify warm scheduling */

10 if zit ∈ {powerless} then
11 if zqt ∈ {wellPowered} ∨ (@zit ∈ Z |

zit ∈ {wellPowered}) then
12 place← dq

13 return place

time slots unless a significantly better hosting node is found. If
the StickyOffloading attempt is unsuccessful (place =
null), the offloading algorithm iterates over candidate nodes
cands in descending order of their SoC, to choose a placement
node (Lines 5–12). To do so, the algorithm first checks whether
the available capacity on candqt is sufficient to host the
function (Lines 6–7). A Reservation module is invoked
which calculates the capacity the candidate node candqt needs
to reserve for its local functions. This is to encourage local
placements as it ensures that candqt has reserved sufficient
capacity for its local functions. The candidate node is ignored
if it does not have enough remaining capacity to host f i,j,kt .
This is merely applied to candqt ∈ {vulnerable} due to its
low priority.

If the node has sufficient capacity, a lowPowered or
vulnerable function is placed on the candqt which is
always a better node in terms of SoC (Lines 8–9). However, in
case of a powerless function (Lines 10–12), the offloading
algorithm places f i,j,kt on candqt only if (1) candqt is a
wellPowered node; or (2) none of the nodes in Z is
wellPowered. As an example, in Fig. 3, the d6’s function is
ignored for warm scheduling on d3, as the only candidate d3

with sufficient capacity to host is a vulnerable node while
wellPowered nodes d1 and d2 are already filled. This is
done because scheduling priority for powerless functions
is the lowest; therefore, they are highly likely to be placed on
the weakest (in terms of SoC) candidate nodes. However, in
a future time slot when the owner node of such a function
gets enough SoC and possibly becomes lowPowered, the
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Algorithm 3: Sticky Function Offloading

Data: D,F, S,C, V, cands, f i,j,kt , dq

Result: returns dq if offloading should stick to dq;
returns null otherwise

/* node’s eligibility and available capacity */

1 if dq /∈ cands ∨ cit − Reservation(dq, vj) ≤ vj then
return null

/* exception for warm scheduling */

2 if (zit ∈ {powerless} ∧ dq ∈
{vulnerable} ∧ ∃z ∈ Z | z ∈ {wellPowered})
then return null

/* compare SoC to determine stickiness */

3 db ← BestPlace(f i,j,kt )
4 if (sqt/s

b
t ≥ stickiness) then

5 return dq

6 return null

function has the highest priority for offloading and is likely
to be rescheduled on a wellPowered candidate node if it
exists. Therefore, the exclusive conditions for warm schedul-
ing (Lines 10–12) try to avoid future rescheduling of such
functions.

C. Sticky Offloading

As described earlier, sticky offloading ensures that a func-
tion f i,j,kt when offloaded to a node dq sticks to this node in
future time slots unless a significantly better placement node
is found. Enabled stateless deployments in Serverless and not
having to couple to other functions, enable this stickiness.
Algorithm 3 shows the details. If dq is not in the list of
candidates anymore or it does not have enough capacity to
host the function, the algorithm returns null indicating that the
sticky placement of f i,j,kt on dq is impossible (Line 1). Also,
as stated earlier, if the function belongs to a powerless
node, it cannot be placed on dq if dq is vulnerable and
there exists some wellPowered nodes in Z. Therefore, null
is returned similarly in this case (Line 2). Otherwise, the sticky
offloading algorithm invokes BestPlace module to greedily
choose the best possible placement node db and compares it
against dq . The BestPlace module performs a greedy search
similar to the Offloading algorithm to find the best node
db. The algorithm sticks to the current node dq if SoC of dq is
not significantly smaller than that of db, i.e., ratio of sqt to sbt is
at least equal to a stickiness parameter (Line 3–5). Otherwise,
the algorithm returns null indicating that a different node
should be chosen for the placement.

IV. IMPLEMENTATION

A. Serverless Edge Platform

Main ingredients to implement the modeled system include:
(A) an edge platform, (B) powered by variable renewable
energy sources, (C) enabled with Serverless computing (D)
that runs IoT applications, (E) where nodes are exposed to
variable sensor data.

Fig. 4: An edge cluster of Raspberry Pis

Raspberry Pis are employed to build a cluster of edge nodes
coexisting in a local network (see Fig. 4). A PiAgent module
is written in ∼ 3700 lines of codes in Python 3.7 using Flask1

micro-framework, and is open-sourced on GitHub2. PiAgent
realizes the autonomy of nodes and also their collaborations
with the scheduler in a parallel and distributed fashion.

Nodes are exposed to different rates of renewable energy
sources, i.e., solar irradiation (the controller node is not
necessarily battery-operated). Real traces of solar irradiation in
a particular time-frame, presenting substantial variations, are
injected to the PiAgent throughout the experiments. Energy
usage on a Pi is measured by a UM25C USB power meter [4].

Serverless platforms are often deployed on top of a con-
tainer orchestrator such as Kubernetes, Apache Mesos and
Docker Swarm. A lightweight Kubernetes, K3s3, tailored for
edge and IoT is used. We use OpenFaaS as the Serverless
platform, since it demonstrates higher adaptability to resource
constrained edge devices and ARM-based architectures [20].

A Smart Agriculture application [17] is chosen as the
use case, as they are supposed to run without an internet
connection and be powered by solar panels and batteries in
remote and vast farming areas. It is decomposed into three
microservices: (1) a smart irrigation management system, (2)
a farming monitoring system, and (3) soil moisture monitoring.
They receive sensors’ data such as humidity, temperature, lu-
minosity, moisture, spatial location and water level. Functions
either make a decision such as water connection/disconnection
or record the data. In the case of recording, since functions are
stateless and ephemeral, Serverless decouples storage systems,
so a containerized stateful/serverful in-memory data storage
Redis server is also deployed on the controller node.

Sensor data generation, as a HTTP request, is simulated
by PiAgent. The generated Sensor data requests invoke the
corresponding functions.

B. Scheduler Framework

The scheduler resides on the central controller node (see
Fig. 1), and its implementation follows the IBM reference
framework, MAPE-K [9]: (1) Monitor: The PiAgent on

1https://flask.palletsprojects.com/en/2.0.x/
2https://github.com/aslanpour/AdaptiveEdge
3https://k3s.io/
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Function

kind: Profile
apiVersion: openfaas.com/v1
metadata:
  name: "f1_1"
  namespace: openfaas
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/hostname
            operator: In
            values: 
            - "d1"
            - "d2"
            - "d3"
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: faas_function
            operator: In
            values:
            - "f1_1"
        topologyKey: "kubernetes.io/hostname"

translator

Profile

Fig. 5: Translating decisions into Kubernetes terminology

Pis responds to the scheduler upon a request with the latest
SoC obtained on the node. (2) Analyze: Analysis of zone
members according to updated SoCs is performed. (3) Plan:
The proposed algorithms undertake this step and deliver a
list of functions with placement decisions to the executor. (4)
Execute: Placement decisions are made effective.

Technically, placement executions are carried out by the
orchestrator, Kubernetes. Kubernetes allows specifying the
placement of (microservice) objects by using terminologies
such as Pod/node affinity/anti-affinity, toleration, etc., de-
scribed in Yaml language [22]. Utilizing OpenFaaS, the in-
tended objects are OpenFaaS Functions that must turn into
Kubernetes Deployments. Hence, Functions cannot directly
use the placement terminology. Instead, Profile objects are
introduced in OpenFaaS to handle that. While placement
decisions in our algorithms are per individual replicas of a
function, Kubernetes defines replicas by a unified Deployment
object. We address this by developing a translator. Fig. 5
demonstrates a sample of developed translation solution for
a particular function f1,1 that asks for 3 replicas to be placed
on d1, d2 and d3. To achieve this, nodes are filtered using
nodeAffinity and replicas are forced apart by podAntiAffinity.

Finally, dynamic scheduling demands CI/CD (continuous
integration and continuous deployment). Maintaining a vast
number of Yaml files for n × m deployments is highly
unconventional. We automate the entire execution process
using Helm4, an automation tool for Kubernetes deployments,
which allows largely conventional deployment descriptions.

4https://helm.sh/

V. PERFORMANCE EVALUATION

A. Experimental Setup

We conduct a 24-hour experiment and repeat each experi-
ment 5 times as per employed scheduler. Main settings are as
follows:
◦ Edge Nodes: A cluster of 5 wireless Raspberry Pi Model
3 B+ (n = 5) is used, and modeled to be powered by solar
panels using real traces [1] to set R, shown in Fig. 6. This
cluster is orchestrated by Kubernetes K3s (version v1.212) and
OpenFaaS (version 8.0.4). A 4-core Pi gives ω = 4000, but we
keep a safety net of 10% to avoid overheating. The maximum
battery capacity is modeled from the original-size battery of
PiJuice for Pi 3 B+ [4] and is set to ϑ = 1250 mWh, and the
low energy threshold ϕ is set to ϑ

10 = 125 mWh.
◦ Application and Workload: The Smart Agriculture applica-
tion runs in three microservices (m = 3), executing randomly
generated workloads using Poisson distribution with different
λ per node and per function, as in [20]. A random seed is set
for reproducibility.
◦ Functions: Functions CPU requirements are set as V =
{400, 300, 100} and allowed maximum replicas of ℵ = 3 ≡
k ≤ 3. Docker containers of functions are pre-cached on all
nodes to eliminate cache interference.
◦ Scheduler: The four non-overlapping zones of powerless,
lowPowered, vulnerable and wellPowered are set
to (0, 0.1ϑ], (0.1ϑ, 0.25ϑ], (0.25ϑ, 0.75ϑ], and (0.75ϑ, ϑ], re-
spectively. Stickiness parameter is set to 0.8, empirically.
Scheduler performs every 30 minutes, i.e., ∆t = 1800s.

B. Benchmark algorithms

The proposed energy-aware scheduler, shown as proposed
in figures, is evaluated against the following benchmarks:
◦ Optimal: This is an offline optimal algorithm which requires
the future knowledge of renewable energy input and incoming
workload for each time slot and solves the constrained optimi-
sation problem described in Section II modeled in MiniZinc5

(version 2.5.5) exploiting Gurobi6 solver (version 9.1.12).
◦ Local: This baseline algorithm always deploys functions

locally, i.e., f i,j,kt ← di. This is worth evaluating to understand
the impact of offloading.
◦ Default: This is the default performance-aware scheduler in
Kubernetes.
◦ Random: This randomly places functions across the cluster.

C. Metrics

◦ Operational Availability: The duration of time a node has
been available (i.e., not in powerless state) to the total time.
This is to represent the objective achievement, as in (4),
by evaluating the degree at which the minimum operational
availability of bottleneck nodes is maximized.
◦ Function Replacements: The total number of times the host
of functions of a node are changed (i.e., # of replacements).
◦ Throughput: The total number of tasks executed per second.

5https://www.minizinc.org/
6https://www.gurobi.com/
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◦ Response Time: The amount of time it takes from when
the sensor data is generated to when the final output of the
function execution is returned to the device.

D. Results

1) Operational Availability: Fig. 7 demonstrates that the
optimal and proposed algorithm maximize the operational
availability of the bottleneck node (node 5) by up to 33% over
the default Kubernetes scheduler, and even further over local
and random (see differences between green columns). Another
achievement is the even energy consumption of cluster’s
nodes despite uneven distribution, which is measured by the
standard deviation (SD) of the operational availability of the
cluster nodes; the smaller, the better. In this regard, the line
chart in Fig. 7 shows that the optimal (5.9) and proposed
(7.16) algorithms improve the SD over default Kubernetes
scheduler (11.95) by 101%, and once again, more over others.
Another indication of the cluster-wide improvement is viewed
in the smaller difference, i.e., gap, between the operational
availability of the maximum and minimum available nodes
(shown by numbers in rectangles in Fig. 7). Fig. 7 shows the
optimal (16) and proposed (20) algorithms narrow the gap over
the default (33) Kubernetes scheduler by up to 103%.

Why do other algorithms fail to satisfy the objective? The
local and default perform relatively alike such that they do not
utilize dynamic resource scheduling and any node exhausts its
own energy in isolation. Both, with different rates, represent
Node 2 as the longest available node. This is because, in such
algorithms, Node 2 hosted its own functions locally and had
a lower workload generation than Node 1; given that, while
other nodes suffered from energy shortage, Node 2 refused to
collaborate and wasted its excess energy. Besides, the default
algorithm is allowed to utilize the resource sharing, but it is
a performance-aware algorithm and no energy consideration
is involved in its one-off placement. Thus, this algorithm
performs the best only if the highest-performance node is
receiving the highest energy input which is not always the
case. Contrary, the random algorithm is allowed to offload but
imposes many recurring replacements which disallows opera-
tional availability improvements, explained in the followings.

2) Function Replacement: Fig 8 shows the number of
replacements per scheduler. While local and default are not
benefiting from a dynamic mechanism, the proposed algorithm
(#57), approaching the optimal (#47), can significantly reduce
replacements over the random (#427) algorithm. The proposed
algorithm achieves this by virtue of effectively restricted
offloading decisions applied by beneficial offloading and sticky
offloading strategies. Such strategies helped the proposed
algorithm performs consistency.

3) Throughput: Fig. 9 evidences that the system’s through-
put relatively increases in line with the improvement in
cluster’s operational availability, where optimal (0.231) and
proposed (0.222) algorithms enable the cluster nodes to exe-
cute up to 15% more tasks, compared to the default (0.198)
Kubernetes scheduler. Another key insight is that although

benefiting the resource sharing tends to compromise well-
powered nodes’ energy, it does not reduce the overall system’s
throughput when handled properly. That is, effective resource
sharing—identifying well-powered and low-powered nodes
and using excessive energy of one for another, practiced by the
proposed algorithm—increases the throughput. The opposite
effect of resource sharing on throughput occurs for the random
(0.185) algorithm due to unplanned offloading decisions.

4) Response Time: Response time represents the impact of
schedulers on QoS. That is, the round trip of sensor/actuation
is expected not to be significantly affected for the sake
of energy management. Fig. 10 confirms that the proposed
algorithm gives comparative figures, way shorter than that of
the random algorithm, preserving the QoS. In other words, in
terms of the average response time and tail of latency (95th

percentile), the proposed algorithm exhibits a narrow margin
of difference to that of the local and default algorithms. The
local scheduler shows the shortest response times, since it
removes the need for remote access to the sensor data imposed
by offloading in other algorithms.

E. Impact of Scheduling Intervals

Fig 11 demonstrates that varied scheduling intervals, i.e.,
short- (15 min.), mid- (30 and 60 min.) and long-term (180
min.), cannot influence the proposed algorithm, and its su-
periority over comparative ones, in maximizing operational
availability of the bottleneck node. Precisely, mid-term inter-
vals appeared of the most appropriate ranges. However, short-
term intervals seem excessively interferential, particularly for
the random algorithm with the least availability of bottleneck
nodes. Long-term intervals appear slightly less efficient for
energy-aware algorithms, i.e., optimal and proposed, due to
delayed actions while random moderately benefits.

F. Contributions of Sticky Offloading and Warm Scheduling

How do sticky offloading and warm scheduling affect the
performance of energy-aware scheduling?. Fig. 12 provides a
detailed analysis of the proposed scheduler contributions in
a sample experiment, taken in 48 rounds (every 30 minutes).
scheduling rounds with no actions are excluded from the be-
ginning and at the end. Also, only replacements are highlighted
and locally placed functions are not mentioned.

Chronologically, over the first 12 scheduling rounds, nodes
are powerless and functions are considered locally. After that
(the starting point in Fig. 12), nodes perceive SoC increase and
while Node 1 and 2 obtain enough energy for locally hosting
their functions, the warm scheduling policy pre-schedules
powerless functions on Node 1 and 2 during rounds 14–
15. This allowed Node 3, 4 and 5 serving sensors data
straight away after joining lowPowered zone in rounds 15,
without having to wait until the next scheduling round. After
a couple of replacements during rounds 15–16, the first sticky
offloading was applied to functions of Node 4 in round 16–
18, indicated by yellow oval. As Node 4 later on is powered
sufficiently and joins the wellPowered zone, the scheduler
moves its functions back locally by round 20. Given the
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unstable situation for Node 3 in round 21–23, its functions
are relocated two times until it joins the wellPowered
zone. Instead, Node 5 fails to join the wellPowered zone
and keeps loosing energy. Recognizing this, its functions are
offloaded to Node 1 and 2 by Offloading in round 21 and
supported by StickyOffloading remains untouched up to
round 31, despite the attraction offers of Node 3 and 4. Node 5
cannot survive beyond round 31, despite offloading, and leaves
vulnerable and then lowPowered zones (indicated by a
purple oval). Particular attempts for warm scheduling thereof
are taken in round 33 and 35, but no energy input is provided.
During round 17–31 some minor offloading actions are also
taken for other nodes.

By approaching the evening, all nodes exhaust their energy
and become powerless. Note that functions of Node 1 and 2 ef-

ficiently kept working locally throughout the experiment with
zero replacements. Such consistency and efficient stickiness
resulted in less intervention of the scheduler, thus less power
wastage, higher serviceability and throughput and sufficient
preservation of QoS.

G. Threats To Validity

Reproducibility: Experiments are repeated 5 times for con-
sistency and the prototype platform is open-sourced for re-
usability and extensions. Real-world and large-scale scenar-
ios: Given real-world experiments, it will effectively operate
in practise. Also, scalability, inside the communication range,
is achievable thank to the centralized design of extreme
edge, with a computationally powerful enough controller node.
Many centralized use cases such as Industry 4.0, Wearable
Devices, Augmented Reality and Virtual Reality, as well as
the smart farming demonstrated in this paper can benefit.

VI. RELATED WORK

To the best of our knowledge, there is no existing work
that studies the energy-aware scheduling at Serverless edge
computing, due to its originality. Further there are even a
few general schedulers for Serverless edge computing. Hence,
we broadly review scheduling efforts on Serverless in cloud
computing, regardless of their goal.

In a cloud-based attempt [3], authors propose a scheduler
for cache hit ratio improvements and evaluated it using simu-
lations. They believe that large packages, e.g., large function
images, could delay functions’ instantiating. In a similar ef-
fort [6], another package-aware scheduler (PASch) is proposed
and is evaluated empirically. However, migrating from cloud
that handles millions of packages, to the edge, specifically
extreme edge with only a few microservices, it appears not
as emergent as energy challenges. We eliminated container
caching effects by pre-caching.
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In a cloud to edge continuum [10], task placement solutions
are proposed to optimize latency and cost by adopting Pi 3
B+ as edge nodes, as we adopted. A similar approach, but for
function placements, is proposed as ActionWhisk [8] that aims
at cost minimization, not energy. In another latency-focused
study [20], moving both task and function in a cluster of
heterogeneous nodes, including Pis, is studied.

Particular non-Serverless attempts are also worth mention-
ing. A node grouping strategy, akin to zones, is followed
in [11] for handling energy variability in the cloud through
a prediction-based task scheduling. Regardless of Serverless
inconsideration, resource-intensive predictions at the edge on
computation-constraint devices will not be always a viable
option. The other non-Serverless attempt for energy efficiency
is made by [21] where they similar to us recognized the
significance of computation than communication and tar-
geted a fair energy distribution through scheduling. In [2],
a distributed controller, e.g., orchestrator, is encouraged for
energy efficiency while we employed a central one and we
acknowledge that the efficiency of only edge nodes has been
our aim. Finally, a rather identical edge environment powered
by renewable energy is considered in [14], for task scheduling
which performs beneficial for particular use cases, but for
privacy-critical ones requires further investigations.

VII. CONCLUSIONS

This paper investigated the challenges of reinforcing energy
awareness at Serverless edge computing through resource
scheduling. To the best of our knowledge, we are the first to
consider such. We proposed resource scheduling algorithms
to place functions on edge nodes powered with battery and
renewable energy sources such as solar owing to their en-
ergy availability. Our proposed algorithms aim to maximize
the operational availability of edge nodes while minimizing
the variation thereof without compromising the throughput
and QoS. We proposed innovative techniques such as sticky
offloading and warm scheduling to reduce recurrent function
replacements. We evaluated the proposed algorithms in a real
test-bed, valuable insights were obtained that confirm the
effectiveness of the proposed scheduler. Results show that
our proposed energy-aware scheduler can improve operational
availability, throughput, and serviceability over the benchmark
algorithms and close to optimal while maintaining QoS, i.e.,
response time, acceptable.

As future work, we cover a broader range of Serverless
edge systems, including heterogeneous edge nodes. Not only
CPU but also GPU and FPGA will be involved with both
wireless and wired communications. In addition to CPU-
intensive IoT applications used in this research, we evaluate
I/O-, memory, and data-intensive applications. We will also
consider simulations to assess the scalability challenges of
the proposed approach. Furthermore, to cover the mobile edge
computing area, decentralization of the scheduler is essential.
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