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Abstract

We consider optimal and suboptimal algorithms for the Euclidean Shortest Path Problem (ESPP) in two
dimensions. For optimal path planning, Our approach leverages ideas from two recent works: Polyanya, a
mesh-based ESPP planner which we use to represent and reason about the environment, and Compressed
Path Databases (CPD), a speedup technique for pathfinding on grids and spatial networks, which we exploit
to efficiently compute candidate paths, in order to construct a completely novel ESPP algorithm, End Point
Search (EPS). In a range of experiments and empirical comparisons we show that: (i) the auxiliary data
structures required by EPS are cheap to build and store; (ii) for optimal search, the new algorithm is
faster than a range of recent ESPP planners, with speedups ranging from several factors to over one order
of magnitude; (iii) for anytime search, where feasible solutions are needed fast, we report even better
performance. For suboptimal path planning, we extend the CPD such that it computes and compresses first
move data of a larger number of selected candidate nodes covering every point in the Euclidean space. Our
approach is search-free, simultaneously fast, and returns a path within a fixed bound of the optimal solution.
In a range of empirical results, we show that: (i) our approach outperforms both offline/online optimal and
suboptimal ESPP algorithms proposed in the literature; (ii) our approach demonstrates excellent path
quality, better than all existing suboptimal ESPP algorithms; and (iii) the approach offers flexibility by
allowing a trade-off between the CPD construction cost (space and time) and the suboptimality bound.
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1. Introduction

We consider the Euclidean Shortest Path Problem (ESPP) which asks us to find obstacle-avoiding paths
between pairs of points in the plane. This is a well known problem motivated by a variety of real-world
applications including robotics [1], indoor location-based services [2] and computer games [3]. In each of
these settings, it is desirable to compute paths that are as short as possible and as quickly as possible.
Simultaneously achieving both of these properties is challenging and the problem has given rise to a variety
of different techniques. Among the most popular and effective are: any-angle grid-based algorithms [4, 5],
mesh-based path planners [6, 7] and modern variations on Visibility Graphs [8].

Leading works in this area all rely on state-space search to find a solution and that search is often (though
not always; see [6]) an all-or-nothing affair; i.e., until a best solution is found, nothing is returned. This
behaviour may be undesirable as it introduces the potential for so-called first move lag, where a mobile agent
must wait for the search to finish completely before it can take even a first step toward its target. In this
work we propose new algorithmic techniques that can mitigate first move lag using anytime behaviour [9];
i.e., we aim to compute “good” solutions quickly and we guarantee to return optimal solutions eventually,
given sufficient time.

Our approach combines the strengths of two recent pathfinding techniques: Polyanya [7], an online mesh-
based ESPP algorithm, and Compressed Path Databases (CPDs) [10, 11], a family of preprocessing-intensive
speedup techniques developed for grids and spatial networks. We provide two versions, one designed for
finding optimal paths, and a second for bounded suboptimal paths. Like many ESPP algorithms, both use
a two step approach involving offline preprocessing followed by online search. In broad strokes:
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Symbol Description

s The start/source of a pathfinding query.

t The target of a pathfinding query.

pi A point in arbitrary Euclidean space.

vi A vertex on a polygonal obstacle.

I A contiguous interval (i.e., segment) of an edge of the mesh

P A path that consists of a sequence of points 〈p1,p2, · · · , pk〉.
|P| The cost (i.e., length) of a path P.

⊕ A concatenation operator that concatenates two paths Pi and Pj .

d(x, y) The Euclidean distance between two points x and y.

sp(x, y) The shortest path from x to y.

fm[x, y] A function that extracts the first-move on sp(x, y) using CPD where x and y ∈ CPD.

cpd(x, y) The shortest path sp(x, y) extracted using CPD where x and y ∈ CPD.

ci The centroid of a circle.

δ The radius of a circle.

ε The error bound for bounded suboptimal search.

lb(x, y) A lower bound on the shortest distance between x and y, i.e., lb(x, y) ≤ |sp(x, y)|.
bsp(s, t) A bounded-suboptimal path between s and t, i.e., |bsp(s, t)| ≤ |sp(s, t)| + ε.

Table 1: Summary of the notations used in the paper

• During the offline phase, we preprocess the input mesh to extract a graph of “interesting” points. We
then preprocess the graph to create a CPD: an auxiliary data structure that stores compressed all-
pairs data and which can be used to efficiently extract optimal paths between any pair of “interesting
points” u and v.

• During the online phase, we connect the start and target points to the “interesting points” graph. We
use the CPD to identify candidate paths. In the optimal algorithm, we consider paths from each of
the |Vs| outgoing successors of the start point s to each of the |Vt| incoming successors of the target t.
In the suboptimal algorithm, we only consider paths from the nearest “interesting point” to the start
to the nearest “interesting point” to the target.

For the optimal approach, because each candidate path is a feasible solution, our approach can provide
strong anytime performance and it guarantees to return the optimal path after considering at most |Vs|×|Vt|
possible paths where |Vs| and |Vt| correspond to the number of convex vertices visible from start and target,
respectively. For the suboptimal approach, the whole pathfinding process is completed by considering only
one path instead of |Vs| × |Vt| paths, so it is very fast.

We give a complete description of the new algorithms and a number of additional enhancements that can
speed up optimal search. We then demonstrate effectiveness in a range of experiments: on maps from real
games and in comparison to a range of leading ESPP techniques, both optimal and bounded suboptimal,
appearing in the recent literature. For optimal path construction, we show that the new method can be
substantially faster: from a few factors to over one order of magnitude. For computing fast anytime solutions,
and for solutions with bounded suboptimal costs, we show that the speed gains are even larger.

2. Preliminaries

In the Euclidean Shortest Path Problem (ESPP), we are asked to find point-to-point paths in a continuous
2D workspace which contains polygonal obstacles in fixed positions. Any non-obstacle point from the
workspace is a potential start or target position and the objective is to find an obstacle avoiding, distance
minimum path, between pairs of points that are priori unknown. We next define some necessary terminology.
Table 1 summarizes the symbols used in this paper.

A polygon is a closed set of edges and a set of points each called a vertex. Each edge is a contiguous
interval between two different vertices (i.e., e = [v1,v2]), where v1 and v2 are the closed ends of e. Polygons
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Figure 1: Node expansion in Polyanya. When the current node ([D,K],s) is expanded, it generates the observable
successors ([D’,L],s), and ([L,K],s); and non-observable successors ([D’,O],D), ([O,A],D), ([A,B],D) , ([B,C],D), and ([C,D],D).

can overlap but only if they share a common edge or vertex. A convex polygon is a polygon where every
line drawn between points in the polygon remains within the polygon.

Two points are visible if there exists a straight line between this pair that does not intersect with any
point from the interior of a polygon. We suppose that a mobile point-sized agent can directly travel between
any pair of co-visible points.

A path is a sequence of points P = 〈 p1,p2, · · · , pk 〉 such that ∀ pi, pi+1 ∈ P, pi and pi+1 are co-visible.
The cost of a path P is the cumulative Euclidean distance between every successive pair of points; i.e.,
|P| =

∑k−1
i=1 d(pi, pi+1) where d(p, p′) is the Euclidean (straight line) distance between p and p′. A path is

optimal if its cost is minimum among all paths between its start and end points. We use the notation sp(s, t)
to define the shortest (i.e., optimal) path from s to t. We use the notation ⊕ to join paths together, assuming
the two endpoints are identical so 〈p1, . . . , pn〉 ⊕ 〈p′1, p′2, . . . , p′m〉 generates the path 〈p1, . . . , pn, p′2 . . . , p′m〉
assuming pn = p′1.

A vertex of a polygon is called a convex vertex if any line between two points “near” the corner stays
within the polygon. More formally, if we form the triangle of the vertex with its two neighbours on the
polygon, then the triangle is within the polygon. For a path P to be optimal in a Euclidean path finding
problem with polygonal obstacles, ∀ pi ∈ P except start and target, pi must be a convex vertex [8, 12]. A
vertex is a dead-end vertex if it never occurs on an optimal path, unless it is the start or end of the path.

2.1. Navigation Meshes

A navigation mesh divides the non-obstacle regions into a set of convex polygons. In Fig. 1, black
polygons are obstacles whereas green/white polygons correspond to a navigation mesh. Popular with game
developers [13], navigation meshes have several attractive properties: they are easy to compute [14], are cheap
to store and update, and guarantee representational completeness (i.e., every traversable point appears in the
mesh). Navigation meshes have been used for pathfinding in various settings: optimal search [7], suboptimal
search [15] and anytime search [6].

2.2. Polyanya

We briefly review Polyanya [7], a state-of-the-art optimal mesh-based planner which appears as an
important ingredient for the rest of the paper. Polyanya search instantiates A* search [16] but on a navigation
mesh. The algorithm can therefore be described in the same general way: there exist search nodes which
generate successors and these are expanded in best first order according to some admissible heuristic function.
Polyanya differs from A* only in the domain-specific model used for each of these components. We sketch
the details below (see Fig. 1).

Search nodes: A search node is a tuple of the form (I, r) where r is a distinguished vertex called the
root and I is a contiguous interval of points from an edge of the mesh with every point i ∈ I being visible
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Figure 2: An example weighted-graph, the source node A is highlighted as green. The first move on the optimal path
from A to any node that shown as red (resp. purple) is B (resp. C)

Ordering A B D G H E C F

A * B B B C C C C

B A ∗ D D D A A A

D B B * G G B B B

Table 2: First moves for A, B and D for the example of Fig. 2.

from r. The model can be understood as follows: the root r corresponds to the last turning point on the
path and I represents all the possible taut continuations of the path, on the way to the target. The start
point s is a special case and defined as (I = [s], r = s). In the example of Fig. 1, ([D, K], s) is a search node
where the root is s and the contiguous interval visible from s is [D, K].

Successors: The successors of node (I, r) are generated by “pushing” the interval I away from r and
across the face of an adjacent traversable polygon. There are two types of successors: observable and non-
observable. A successor (I ′, r) is observable if each point p′ ∈ I ′ is visible from r. By contrast, a successor
(I ′, r′ 6= r) is said to be non-observable if each point p′ ∈ I ′ is not visible from r. Note that observable
successors share the same root as the parent. For non-observable successors, the root r′ is one of the two
endpoints of the parent interval I. Fig. 1 shows the successors for node ([D, K], s) in green. Since the edge
[L, K] is visible from the root s, it is an observable successor and has the same root, i.e., the successor node
is ([L, K], s). In contrast, the edge [O, A] is not entirely visible from the root s and it is a non-observable
successor with root D, i.e., the successor node is ([O, A], D). The target is a special case and can be generated
as soon as the search reaches its containing polygon.

Evaluation Function: To prioritise a node n = (I, r) for expansion, Polyanya instantiates the f -value
function: f(n) = g(n) + h(n). Here g(n) is the cost of the optimal path from the source node s to the root
r. The function h is an admissible lower-bound and indicates the cost from r, via some point p ∈ I, to the
target t. The estimate requires only simple geometry. Consider for example the node n = ([O, A], D) from
Fig. 1. The g-value (shows in red) is the shortest distance from s to the root D. The h-value (shows in blue)
is the minimum Euclidean distance from D to t that passes through the edge [O, A], i.e., h = d(D, O) + d(O, t),
where d() is the Euclidean straight line distance. See [7] for more details.

Polyanya terminates when the target is expanded or when the open list becomes empty.

2.3. Compressed Path Database

A compressed path database (CPD) [10] is an auxiliary data structure that encodes and compresses
the first move (equivalent first arc) on the optimal path from each node s ∈ V to every other node t ∈ V .
Given a weighted graph V (i.e., an example is shown in Fig 2), CPDs are constructed offline using one
complete Dijkstra search for each source node s ∈ V . The worst-case complexity is therefore O(|V ||E| +
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|V |2 log |V |). However, each Dijkstra search can be executed in parallel with a potential speedup depending
on the number of processors available on the machine.

First-Move Tables: With only a small modification to the basic Dijkstra algorithm (specifically, for
each node, we maintain the first outgoing arc on the optimal path from s to this node), we compute for each
source node s ∈ V , a first move table where fm[s, t] returns a symbol that tells which of the outgoing arcs
of s appear on an optimal path, from s to any t ∈ V . Table 2 shows all first moves for source vertices A, B
and D in Fig. 2. Note that each fm[s, s] is assigned a wildcard symbol [17] “*” (i.e., “don’t care” symbols)
as we never need to look up a move from s to itself.

Compression: The CPD compresses first-move tables using run-length encoding (RLE) [11]. RLE
compresses a string of symbols into representative sub-strings, called runs. Each run has two values: a start
index and a first-move symbol. E.g., the string C; C; C; D; D; D, can be compactly represented as two runs:
1C; 4D. In addition to that, the wildcard symbol “*” is allowed to be compressed with any other preceding
or subsequent symbol. For example, row A in Table 2 can be compressed into just two runs: 1B; 5C.

The effectiveness of RLE compression is dependent on the way the candidate nodes are ordered. Following
the suggestion in [18], we use a Depth-First-Search (DFS) ordering of nodes. Specifically, we run a DFS on
a randomly selected node and the DFS ordering corresponds to the order in which these nodes are accessed
by the DFS. This ordering tends to order the nodes that have the same symbol closer to each other which
helps with compression. In Table 2, the order of the columns is a DFS visit order in Fig. 2 starting from
node A.

Path Extraction: CPDs can efficiently retrieve optimal paths for any given start-target pair within the
graph. We denote the function fm[s, t] which extracts from the database a first-move symbol, from s to t.
Each extraction operation fm[s, t] requires a binary search on the RLE-encoded first-move table of s to find
the first-move symbol to reach t, which runs in O(log n) where n is the number of symbols in it [11]. Once
a first-move is extracted, it can be executed (i.e., followed) to reach a new location. The entire pathfinding
process can thus be implemented using a simple recursion: we extract and follow optimal moves until the
target is reached.

3. Optimal Search

Our first contribution is an algorithm for quickly finding optimal Euclidean paths. We examine the two
components of offline preprocessing followed by path extraction.

3.1. Offline Preprocessing

We now describe the auxiliary data structures required by our new algorithm and the offline preprocessing
step that constructs them. There are two main steps: constructing a graph of co-visible convex vertices and
building a corresponding CPD. This phase takes as input a navigation mesh which can be constructed as
described in [7].

3.1.1. Identifying Co-Visible Vertices

A variety of methods exists for generating a graph of co-visible vertices. All have worst-case upper-
bounds of O(n2) where n is the number of vertices in the planar environment. Faster performance can
be achieved in practice by only considering and connecting convex vertices. Variations of this idea appear
many times in the literature and under different names; e.g. Tangent Graphs [19], Silhouette Points [20]
and Sparse Visibility Graphs [8].

We now propose a new efficient algorithm for computing such a Visibility Graph, in two dimensions,
using the Polyanya path planner. The vertex set V of the visibility graph consists of all convex vertices of
the obstacles. In Fig. 3, {A, D, G, H, K, L, O} are convex vertices. Other obstacle vertices (e.g., C) cannot appear
on any optimal path, and are dead-end vertices. Next, for each v ∈ V , we run a modified Polyanya search to
find convex visible vertices from v. Specifically, we modify the Polyanya such that it only generates visible
successors and the search runs in a depth-first search manner without using any heuristic. If a successor’s
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Figure 3: Green area corresponds to the area visible from the source node A. The first move on the optimal path
from A to any node in the purple (resp. pink) area is D (resp. L).

Ordering A D G H K L O

A * {E ,D} D {E ,H} {E ,K} {E ,L} {E ,O}
D {E ,A} ∗ {E ,G} {E ,H} {E ,K} {E ,L} {E ,O}
G D {E ,D} * {E ,H} {E ,K} {E ,L} {E ,O}

Table 3: First moves for A, D and G for the example of Fig. 3.

interval contains a convex vertex v′, we add an edge (v, v′) ∈ E, where initially E = ∅. The cost of this edge
is d(v, v′). This algorithm has the usual quadratic worst-case but in practice runs much faster.

Consider Fig. 3 as an example and assume that the source node is A. The search starts by generating
all the visible successors for the two adjacent polygons that contain A. It cannot expand further for the
successors that are on the obstacles or map boundary (e.g., ([A, B], A), ([B, C], A), ([P, O], A) and ([P, Q], A) etc.,).
Thus, the remaining visible successors are ([D, K], A), ([K, L], A) and ([A, O], A). When we expand the successor
([D, K], A), it finds two visible convex vertices D and K, and generates the visible successor ([H, K], A). Since
it is a depth-first search, the successor ([H, K], A) is expanded which finds the visible convex vertex H, and
generates the successors ([H, I], A), ([I, J], A) and ([K, J], A) (which are all ignored because they are either on
obstacles or on the map boundary. Similarly, the successors ([K, L], A) and ([A, O], A) are processed and two
visible convex vertices L and O are found by them, respectively. The search terminates after exploring the
area visible from A (green area shown in Fig. 3). Thus, this Polyanya search adds edges from A to each of
the convex visible vertices {D, K, H, L, O} into E along with their corresponding Euclidean distances.

We remark that a previous work [8] used a similar approach to find co-visible vertices but their searches
are conducted using Anya [5]: an optimal any-angle path planner where polygonal obstacles are rasterised
using a grid. Anya searches on a grid map and generates the successors by considering the adjacent grid
row. The search space is explored row-by-row. On the other hand, Polyanya extends Anya in Euclidean
space which searches on the convex polygons of mesh and explores polygon-by-polygon, hence improves the
node expansions by a few factors and achieves up to one order of magnitude speed up [7]. In experiments,
we compare against this method and we improve it using our more general mesh-based approach.

3.1.2. Building the CPD

Given the graph of co-visible nodes, we construct a corresponding CPD [10]: an all-pairs data structure
that encodes the first move (equivalent first arc) on the optimal path from each node s ∈ V to every other
node t ∈ V .

First-Move Tables: As stated earlier, the first-move table of s stores the first-move symbol fm[s, t]
for every t ∈ V . When s and t are co-visible (i.e., fm[s, t] = t), in addition to storing the first-move t, we
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also store a redundant symbol E which represents that s and t are co-visible (i.e., a direct path from s to
t exists). For example, for the first-move from A to D, we store D as well as E . Another special symbol is
(wildcard) “*” symbol which we add for table entries where s = t, since these entries will never be retrieved.
We include the redundant and wildcards symbols because they substantially improve compression as shown
in [17] and explained shortly. Table 3 shows all first moves for source vertices A, D and G in Fig. 3.

Compression: We compress first-move tables using run-length encoding (RLE) [11]. To improve
RLE compression we apply several known enhancements [17]. First, we allow the wildcard symbol ”*” to
be compressed with any other preceding or subsequent symbol. Secondly, for table entries with redundant
symbols, we choose the one that produces a longer run. For example, row A in Table 3 can compress into
just two runs: 1D; 4E (cf. 3 runs if we choose E as the symbol for column D).

We use a Depth-First-Search (DFS) ordering of columns as suggested in [18]. In Table 3, the order of
the columns is a DFS traversal order of the convex vertices appearing in Fig. 3 starting from A.

3.2. Online Search

CPDs can efficiently retrieve optimal paths when both source s and target t are the vertices of the
co-visible graph as discussed in Section 3.1.2. One of the main challenges in ESPP is that s and t can be
arbitrary (i.e., a priori unknown) locations on the map. To handle such cases we propose to first identify
all graph vertices visible from s, denoted Vs, and all graph vertices visible from t, denoted Vt. We then
extract a set of paths, from each vs ∈ Vs to each vt ∈ Vt. Let cpd(vi, vj) denote an optimal path from vi
and vj (extracted via the CPD). If s and t are not visible to each other, the shortest path (i.e., the one with
shortest distance) sp from s to t is then

sp(s, t) = argmin{|〈s, vs〉 ⊕ cpd(vs, vt)⊕ 〈vt, t〉| | vs ∈ Vs, vt ∈ Vt} (1)

In Fig. 3, Vs = {D, G, H, K, L} and Vt = {A, O} and the optimal path from s to t can be obtained by
computing the pair-wise optimal paths for each vs ∈ Vs, vt ∈ Vt. As evident from Eq. (1), this basic
algorithm extracts at most |Vs| × |Vt| candidate paths using the CPD and guarantees to return an optimal
solution.

3.2.1. Incremental Exploration

We now consider a more sophisticated algorithm, End Point Search (EPS), that improves performance
by reducing the number of pair-wise optimal paths that must be examined before guaranteeing optimality.
Algorithm 1 provides an overview of the algorithm. Additional pruning rules and optimisations are discussed
in Sections 3.2.2 and 3.2.3.

The key idea of Algorithm 1 is to incrementally explore the visible area from each of s and t, discovering
visible vertices for s and t one by one. We propose to execute two best-first Polyanya searches, denoted
searchs and searcht, each of which is resumable, generates only visible successors at every expansion step
and returns visible vertices as they are found. Vs and Vt record the visible vertices returned so far by searchs
and searcht, respectively. The shortest path sp and its length |sp| are initialized to be empty and infinity,
respectively (we use ← as an assignment operator and = as an equality condition in the pseudocode).

The algorithm iteratively expands nodes from searchs and searcht in turn until both searches are
exhausted (line 2). We use cur (resp. opp) to denote the current (resp. opposite) direction in which the
search is expanding (line 1); i.e., if cur is start s then opp is target t and vice versa. During each iteration,
the algorithm incrementally progresses the relevant Polyanya search which returns the next visible vertex v
(line 3). If the returned vertex is s or t, the search terminates because s and t are visible from each other
and the optimal path is 〈s, t〉 (line 5). If the search is not exhausted (i.e., v is not empty), the algorithm
updates the shortest path sp by considering all paths from visible vertices at the opposite end Vopp to this
new vertex v. Specifically, for each v′ ∈ Vopp, the algorithm uses the CPD to get the optimal path from v′

to v and updates sp if the new path p is shorter than sp (lines 7 to 10). The search bound for both searches
searchs and searcht is updated to be the shortest distance |sp| found so far (line 11). The new vertex v is
added to the corresponding visible set Vcur. The two ends cur and opp are then swapped so that the search

7



Algorithm 1: End Point Search (EPS)

Input: s:start, t:target, CPD: compressed-path-database
Output: an optimal path from s to t
Initialization: Vs ← ∅, Vt ← ∅, sp← 〈〉, |sp| ← ∞

1 cur ← s; opp← t;
2 while searchs and searcht are not exhausted do
3 Let v be the next visible vertex returned by searchcur;
4 if v = s or v = t then // this implies s and t are co-visible

5 return 〈s, t〉;
6 if v 6= φ then // searchcur is not exhausted

7 for each v′ ∈ Vopp do
8 p← 〈opp, v′〉 ⊕ cpd(v′, v)⊕ 〈v, cur〉;
9 if |p| ≤ |sp| then

10 sp ← p;
11 set |sp| as the search bound for both searchs and searcht;

12 Vcur ← Vcur ∪ v;

13 cur, opp← opp, cur;

14 return sp;

is alternated between searchs and searcht (line 13). When the while loop concludes, the algorithm returns
the best found path sp.

Note that EPS is a bi-directional path extraction algorithm. In traditional bi-directional search algo-
rithms [21], the search is guaranteed to meet in middle and the challenge is to balance the searching effort
between the two sides. In contrast, EPS is a bi-directional path extraction algorithm that only requires a
bi-directional insertion to connect with the CPD nodes. Here, the main challenge is to avoid |Vs|× |Vt| total
path extractions.

3.2.2. Pruning Candidate Paths

Recall that, in each iteration, the algorithm obtains a vertex v visible from cur (line 3). We can
immediately discount dead-end vertices, and non-turn [22] vertices. A vertex is called a dead-end vertex if
it cannot lead to anywhere else in the map, e.g., in Fig. 4, E is a dead-end vertex for the source s. A vertex
v on a polygon P is a non-turn vertex for cur (e.g., s or t) if v is visible from cur and the ray shot from
cur to v enters P from v – the non-turn vertex v does not allow turning around such obstacle. In Fig. 4,
vertex G is visible from s but there is no turning point possible since the ray sG continues into the obstacle
polygon. In contrast, H is not a non-turn vertex because the ray from s to it does not enter the polygon
(and we can turn around this obstacle from H).

We can also prune a vertex v which cannot lead to a shorter path than the current bound, e.g. where
d(s, v) + d(v, t) ≥ |sp|. For example in Fig. 4, we can safely ignore the vertex K as d(s, K) + d(K, t) > |sp|,
where |sp| is the length of the optimal path found so far (highlighted as red). Finally, searchcur can terminate
when the top of the open list has an f value greater than |sp|, since no path using this entry can be shorter
than |sp|.

We can avoid extracting paths for pairs (vs ∈ Vs, vt ∈ Vt) if they cannot lead to a shorter path than the
current bound, i.e., d(s, vs) + d(vs, vt) + d(vt, t) > |sp| since d(vs, vt) is a lower bound on the shortest path
distance |cpd(vs, vt)|. Similarly, we can prune vertex pairs (vs, vt) where the first move from either end is
non-taut, i.e., string pulling results in a shorter path. For example, let w be the first move on the shortest
path from vs to vt. If 〈s, vs, w〉 is non-taut then it cannot be part of a shortest path. Similarly, we can
prune the vertex pair if 〈t, vt, w′〉 is not taut where w′ is the first move on the shortest path from vt to vs.
Consider the example in Fig. 4, the first move from H to O is O but 〈s, H, O〉 is non-taut so we do not need to
consider the pair (H,O) further.
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Figure 4: An example of End Point Search. The red lines show the optimal path. The area shown green or yellow
corresponds to the space visible from s and t. The green area shows the space incrementally explored by Polyanya
when searchs and searcht are both exhausted.

3.2.3. CPD Cost Caching

In each iteration of the while loop, the algorithm uses the CPD to extract the paths between a vertex v
and every v′ ∈ Vopp (line 8). We use the CPD to extract the optimal path from v′ to v and, for each vertex
vx on the extracted path, we cache |cpd(vx, v)|, the shortest path distance from vx to v. For a subsequent
CPD path extraction, if the optimal path from v′′ to v reaches the vertex vx for which |cpd(vx, v)| is cached,
we can use the cached distance to get the path length from v′′ to v. This simple caching strategy avoids
unnecessarily using the CPD to extract the path that is already cached. Although the algorithm can cache
|cpd(vx, v)| for every v ∈ Vs ∪ Vt, in our implementation, we only cache |cpd(vx, v)| for the vertex v in the
current iteration of the while loop and reuse the space in each iteration for the new v. This ensures that the
caching uses O(1) space for each vertex, i.e., the total space used by the caching is O(|V |) where |V | is the
number of nodes in the co-visible graph. Moreover, we observed that this caching is already quite effective
and caching the distance for each v ∈ Vs ∪ Vt does not result in a significant further improvement in query
performance.

3.2.4. Putting it All Together

End Point Search gives us an incremental exploration of the pairs of endpoints on the CPD, which is
reduced by pruning and improved by caching CPD distances, eventually leading to an optimal path. Next,
we prove the correctness of our approach.

Theorem 1. Algorithm 1 returns an optimal path from s to t

Proof. If s and t are visible to each other, one of the two Polyanya searches searchs and searcht will
discover this returning 〈s, t〉 at line 5. Otherwise, the shortest path must contain at least one vertex vs
visible from s (i.e., vs ∈ Vs) and at least one vertex vt visible from t (i.e., vt ∈ Vt). Algorithm 1 explores
all paths through vs ∈ Vs and vt ∈ Vt (see Equation (1) at the beginning of Section 3.2) except: 1) those
vertices that are dead-end, non-turn or have f -values bigger than current distance |sp| (thus can never be
part of the optimal path); 2) and the vertex pairs (vs, vt) where the shortest possible path through them,
〈s, vs〉 ⊕ cpd(vs, vt)⊕ 〈vt, t〉, is either non-taut or longer than the current distance |sp|. Hence the returned
path is optimal.

Example 1. Fig. 4 gives an example of the algorithm in action. End Point Search (EPS) starts the searchs
and returns a visible vertex D (line 3). The non-turn vertex ({G}) and dead-end vertices ({E, F}) of the
polygon containing s are visited by Polyanya but are pruned as explained in Section 3.2.2. Then, the search
is swapped and the searcht returns a visible vertex O after filtering {A} (a non-turn vertex) and {P, Q, R}
(dead-end vertices). The CPD is used to extract the path from D to O, and the shortest path sp (shown
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Map #M #Q #V #CV
Build Time Raw Memory CPD\E Memory CPD Memory
Avg Max Avg Max Avg Max Avg Max

DAO 156 159k 1727.6 926.5 0.033 0.831 8.012 134.977 0.310 4.605 0.207 3.640

DA 67 68k 1182.9 610.8 0.006 0.048 2.244 20.611 0.115 0.484 0.063 0.254

BG 75 93k 1294.4 667.7 0.011 0.233 3.887 66.064 0.188 1.828 0.119 1.366

SC 75 198k 11487.5 5792.7 0.711 8.463 190.38 2202.23 3.615 19.493 2.325 14.075

Table 4: Total number of Maps (#M) and Queries (#Q), average number of vertices (#V) and convex vertices
(#CV) in the maps, average and maximum building time in minutes, and average and maximum memory before
compression (Raw memory), after compression without using the E symbol (CPD\E memory) and after compression
(CPD memory) in MB for the four benchmark suites.

red in Fig. 4) and search bound |sp| are updated accordingly (lines 7 - 11). In the next iteration, searchs
expands the successor ([D,K],s) and returns the next visible vertex K. However, the vertex K can be safely
ignored by our distance pruning approach introduced earlier because the path through K (shown in broken
lines) is longer than the current shortest path sp, i.e., d(s, K) + d(K, t) > |sp|. After that, the searchs and
searcht are both exhausted as the f -values of the rest of the successors in their respective queues are bigger
than the search bound |sp|, e.g., the successor ([K,H],s) is never explored by searchs because its f -value
d(s, K) + d(K, t) > |sp|. Thus, the algorithm terminates and returns sp (the path shown in red).

3.3. Experiments

We run experiments on a variety of grid map benchmarks which are described in [23], including 373
game maps from four sets of maps: DAO (156), DA (67), BG (75), SC (75). All benchmarks are available
from the HOG2 online repository.1 We compare our algorithm with a range of competitors detailed below:
Polyanya: [7] is a fast, optimal, online pathfinding algorithm on navigation meshes. The source code of
Polyanya and input navigation mesh are from the publicly available repository.2

ENLSVG: (Edge-N-Level Spare Visibility Graph) [8] is an optimal, off-line pathfinding algorithm. The
implementation of ENLSVG is taken from an online repository.3

Poly-ENLSVG: is an improvement of the original ENLSVG algorithm which we improve by applying our
Polyanya-based visible vertex retrieval approach (see Section 3.1.1) for the insertion phase of ENLSVG.
Here, we prune the dead-end and non-turn vertices to further improve the performance.

SUB-N-T: (N-level Subgoal graph) [24] is a suboptimal, off-line pathfinding algorithm. We run Theta-A*
[25] on top of N-level subgoal graph, using the publicly available implementation.4

TRA*: (Triangulation Reduction A*) [6] is an anytime, optimal pathfinding algorithm that runs on navi-
gation meshes.

For more details of the competitors, see Section 5. We implemented our algorithm in C++. All the
experiments are performed on a 2.6 GHz Intel Core i7 machine with 16 GB of RAM and running OSX
10.14.6.

Experiment 1: CPD Statistics. Table 4 shows the average and maximal size of CPD, and building time
for the four benchmarks suites. Clearly, our CPDs are memory efficient and the compression reduces the
size of first-move tables by up to two orders of magnitude. The tables have very small numbers of runs

1https://github.com/nathansttt/hog2
2https://bitbucket.org/mlcui1
3https://github.com/Ohohcakester
4http://idm-lab.org/anyangle
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Figure 5: Runtime comparison on the four benchmarks. The x-axis shows the percentile ranks of queries in number
of node expansions needed by A* search to solve them.

Map
Total Poly-ENLSVG EPS

|Vs| |Vt| |Vs| |Vt| |Vs| |Vt| #Paths #FM

DAO 69.324 71.495 19.778 19.987 15.108 14.955 5.094 329.463

DA 46.171 45.707 13.202 12.922 10.779 10.755 2.470 144.872

BG 51.926 49.175 15.629 14.335 9.445 9.226 2.707 98.955

SC 180.013 178.874 45.889 45.356 29.819 29.707 4.028 976.194

Table 5: |Vs| (resp. |Vt|) denotes the average number of vertices visible from s (resp. t) considered by an algorithm
to obtain the results. Total includes all visible vertices for s or t without any pruning. For EPS, we also show the
average number of path extractions (#Paths) and first move extractions (#FM) from the CPD.

per entry and hence very fast lookup times. In terms of compression, we also observed that the E symbol
helps to reduce the size of CPDs by 20% – 50% on average and, for some of the maps, we observed that
the E symbol reduces the size by a few factors. In games, it is common to treat all the maps for one game
together. Although the raw memory of the first move table of one map may be affordable, it may not be
feasible to store the raw tables of all the maps of a game in the main memory (e.g., the sum of raw memory
for SC benchmark maps is around 14 GB in total). Our CPDs are cheap to build, and for most of the maps
can be computed within a few minutes. Note that the CPDs are built on a 12 core Macbook Pro laptop
and the performance would be better/worse if more/less processors are available.

Experiment 2: Query Processing Time. In Fig. 5, we compare the query processing time for our
approach against the competitors. We sort the queries by the number of node expansions required by
the standard A* search to solve them (which is a proxy for how challenging a query is) and the x-axis
corresponds to the percentile ranks of queries in this order. Fig. 5 shows that EPS significantly outperforms
the competitors on all four benchmarks especially when the queries are more challenging. Note that the y-
axis scale is logarithmic. EPS is around 2-4 times faster than SUB-N-T (which does not guarantee optimal
solutions) and 2-5 times faster than Poly-ENSLVG. Polyanya is faster than EPS for the less challenging
queries because, for such queries, s and t are close (and often visible from each other) and the dominant
cost for EPS is the two incremental Polyanya searches from s and t. For more challenging queries, EPS is
more than an order of magnitude faster than Polyanya.

Table 5 reports the average number of the vertices visible from s and t expanded by Poly-ENLSVG
and EPS after pruning non-turn and dead-end vertices. Both algorithms significantly reduce the number of
visible vertices expanded. Since EPS makes use of the search bound |sp| to restrict the Polyanya search,
it expands a smaller number of visible vertices than Poly-ENLSVG especially for BG and SC benchmarks.
Also, note that the number of path extractions by EPS is much smaller than |Vs| × |Vt| since path pruning
can avoid considering many of them. We remark that most of the first-move extractions (#FM) are incurred
for non-taut pruning, e.g., to determine whether a path connecting v′ ∈ Vopp to v ∈ Vcur is non-taut from
the opposite end opp, we need to get the first-move vi from v′ to v and then check whether 〈opp, v′, vi〉 is
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EPS No Caching & Pruning Cost Caching Only Pruning Only Visible First

Map #FM Time #FM Time #FM Time #FM Time #FM Time

DAO 329.463 23.905 23029.611 309.090 1981.007 50.342 363.923 24.512 335.019 29.674

DA2 144.872 14.186 6830.880 93.208 874.539 24.648 149.625 14.979 148.144 16.919

BG 98.955 12.299 2684.693 48.734 499.162 20.415 100.194 12.667 110.234 17.857

SC1 976.194 61.326 85617.378 1232.716 6298.061 177.680 994.956 62.375 1084.397 82.899

Table 6: Average query processing time (µs) and number of first move extractions (#FM) of our proposed EPS
approach. We report results for each different pruning strategy.

non-taut or not. Similarly, to check whether the path is non-taut from the cur end, we need to extract the
first-move vj from v to v′ and check whether 〈cur, v, vj〉 is non-taut or not. Although this non-taut prun-
ing requires first-move extractions, overall it improves the performance as it reduces the number of paths
extracted (#Paths) by EPS (which in turn reduces the overall number of first-move extractions needed to
extract the paths). Also, we found that our previous implementation of EPS reported in [26] applied non-
taut pruning only from the opposite end (opp). In this extended version, we updated the implementation
by also applying non-taut pruning from the current end (cur) which significantly reduced both the number
of paths and first-moves considered by EPS, resulting in an improved performance.

Experiment 3: Pruning Strategies. In Table 6, we show the average number of first move extractions
and query processing time over four benchmark suites for: our final algorithm (EPS); we omit both pruning
and caching (No Caching & Pruning); we use only cost caching but not pruning (Cost Caching Only); we
use only pruning but not cost caching (Pruning Only); and we apply both pruning and caching but we first
retrieve all visible vertices w.r.t. s and t (Visible First) instead of incrementally exploring them. Clearly,
the reduction in search is significant and Pruning is the most important enhancement. Among the many
ingredients of the Pruning techniques, we also observe that the non-taut path pruning is the most significant
one. By performing non-taut path pruning on both ends, it allows the search to filter out most suboptimal
candidate paths and quickly leads to the optimal one. On the other hand, Cost Caching Only essentially
considers all the possible solutions and achieves a speedup vs. the baseline (i.e., No Caching & Pruning)
by a few factors. Visible First requires the full insertions (i.e., finding all the visible vertices) which is time
consuming, thus runs slower than EPS.

Experiment 4: Anytime Search. In time-constrained applications (e.g., computer games), anytime
pathfinding is often desirable which returns a valid but potentially suboptimal path as soon as possible
before progressively optimizing it until an optimal path is found. This motivates us to consider EPS as an
anytime search algorithm. We begin with evaluating the anytime behaviour of EPS. In Fig. 6 (i), we show
the average runtime of EPS to find: the first valid path (shown as First solution); the first path with length
within a certain factor Q of the optimal path length (shown as Q = 1.xx); and the guaranteed optimal path
(i.e., when EPS terminates). Here, Q = 1.00 is the time taken by EPS until it happens to discover the
optimal path (although it cannot terminate because it cannot yet guarantee the optimality of this path).
Recall that EPS makes use of pruning techniques to eliminate the candidate paths that are found to be
non-optimal. Although this improves the runtime of EPS to find the optimal path, it adversely affects the
performance of EPS for anytime search (e.g., the first valid path is found later as several candidate paths
may have been pruned). This further motivates us to consider another variation of EPS for anytime search,
where we consider all candidate paths and only use cost caching to improve the efficiency. We denote this
as EPS (Cost Caching Only). Fig. 6 (ii) shows anytime search for EPS (Cost Caching Only). It is clear
that EPS (Cost Caching Only) demonstrates excellent anytime behaviour, e.g., it finds the first valid path
within 5µs and a path with Q = 1.10 (a path with length at most 10% longer than that of the optimal path)
within 10µs. However, note that EPS (Cost Caching Only) understandably runs slower than EPS for the
optimal path search (i.e., Provably Optimal) which demonstrates that the pruning rules provide a tradeoff
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Figure 6: (i) EPS and (ii) EPS (Cost Caching Only) anytime behaviour. The x-axis is the same as in Fig. 5. The
y-axis shows the average runtime when EPS finds the first path with length within a certain factor Q of optimal
path length (i.e., 1.00, 1.01, 1.05 and 1.10). Q = 1.0 is the time when EPS happens to discover the optimal path
but cannot guarantee its optimality. The provably optimal path is the guaranteed optimal path at termination.
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Figure 7: Speedup of (i) EPS and (ii) EPS (Cost Caching Only) over A* search for finding solutions of different
quality on benchmark suite BG, and a reproduced graph for the same experiment for (iii) TRA* where (F = 1)
represents the query performance that TRA* finds the first solution.

between optimal search and anytime search.
In Fig. 7 (i) and (ii), we show the speedup of anytime search compared to A* search for EPS and EPS

(Cost Caching Only), respectively. Fig. 7 (iii) shows a graph reproduced from [6] showing similar comparison
for TRA* anytime search, a popular mesh-based planner, which aims at finding the first solution fast. It
can be seen that the speedup over A* search provided by EPS(Cost Caching Only) is significantly bigger
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than those achieved by TRA*. For example, to find the first solution for queries with path length around
500, EPS(Cost Caching Only) is around 1000 times faster than A* whereas TRA* is around 180 times faster
than A*. EPS provides a bigger speed up over A* compared to TRA* for queries with longer paths but a
smaller speed up for the shorter queries. This is mainly because EPS focuses on finding the optimal solution
fast and prunes many candidate paths which may result in a delay in finding the first solution.

4. Bounded Suboptimal Search

In this section, we present techniques to find a bounded suboptimal path. We focus on an absolute bound
on the suboptimality, that is, |bsp(s, t)| ≤ |sp(s, t)|+ ε where ε is the error bound, |bsp(s, t)| is the length of
the bounded suboptimal path between s and t returned by our algorithm and |sp(s, t)| is the shortest path
distance between s and t. First, we show how to modify EPS to opportunistically terminate early when it
finds a bounded suboptimal path. We then describe a search free method that builds a bounded suboptimal
path using a larger CPD.

4.1. Bounded Suboptimal EPS Search

For efficient suboptimal search, it is important that the search can be terminated as soon as we find a
candidate path that is within the bound |sp(s, t)| + ε. Therefore, each candidate path found by the EPS
becomes important which motives us to consider EPS (Cost Caching Only) for the suboptimal search; i.e.,
we consider all possible solutions found by EPS without applying our pruning rules and apply only the cost
caching to improve the performance. Let lb(s, t) be a lower bound on the length of the shortest path between
s and t. EPS can terminate as soon as it finds a path bsp(s, t) such that |bsp(s, t)| ≤ lb(s, t) + ε. Note that,
given the lower bound, EPS can also be used to obtain a path with a relative bound by terminating EPS
when |bsp(s, t)| ≤ lb(s, t)× (1 + ε). One can use the Euclidean distance to obtain lb(s, t) but it is not likely
to be very effective. We propose a more effective lower bound as described below.

Recall that EPS uses CPD to compute the shortest distance between vs ∈ Vs and vt ∈ Vt denoted as
|cpd(vs, vt)| where vs is visible from s and vt is visible from t. Using the triangle inequality, it is easy to show
that |cpd(vs, vt)| −d(s, vs)−d(t, vt) ≤ |sp(s, t)|, i.e., |cpd(vs, vt)| −d(s, vs)−d(t, vt) is a valid lower bound on
the shortest distance. Whenever EPS uses CPD to compute the shortest distance between a pair of vertices
(at line 8 in Algorithm 1), we compute the lower bound for the pair. The algorithm maintains lb(s, t) to be
the largest lower bound computed so far. Specifically, we initialise the lb(s, t) to be the Euclidean distance
d(s, t), let Pv denotes the set of (vs, vt) pairs for which EPS has computed the shortest distance using CPD.
Then, lb(s, t) = max(lb(s, t), argmax(vs,vt)∈Pv

|cpd(vs, vt)| − d(s, vs)− d(t, vt)).
Consider the example of Fig. 8 (ii) and assume that EPS uses CPD to compute the shortest distances

between the pair of vertices (D,c′9) and (E,P). Then, lb(s, t) = |cpd(P,E)| − d(s, E)− d(t, P ) because the pair
(E,P) generates a better (larger) lower bound than that of (D,c′9). For the rest of the paper, we denote the
bounded (S)uboptimal EPS as SEPS.

4.2. Centroid-based Path Extraction

Although our SEPS may terminate earlier to find a path within a given bound ε, it still requires searching
for the endpoints and computing distances between multiple pairs of vertices using CPD, which may be
inefficient. This motivates the Centroid-based Path Extraction (CPE) algorithm, a search-free algorithm
that provides a bounded suboptimal path by using the CPD to extract the path between only a single pair
of points. The key idea of this algorithm is to fill in the navigation mesh with a set of candidate nodes,
called centroids, such that for every point p in the space there exists a centroid visible from p and within
distance δ = ε/4. Then, first-move tables are created using these centroids which are compressed to obtain
a centroid-based CPD. To compute the shortest path, we find a centroid cs (resp. ct) that is within distance
δ from s (resp. t) and use the CPD to compute the shortest path between cs and ct. We show that the path
〈s, cs, ct, t〉 is within the absolute bound ε. The path is further refined using string pulling.
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Figure 8: (i) shows an example of our hexagonal tiling approach for a given polygon, where c1 - c′9 (shown as red) are
the centroids selected for building CPD; and (ii) shows a partial example with centroids created for central polygon
according to (i). Green area corresponds to the area visible from the source node A. The first move on the optimal
path from A to any node in the purple (resp. pink) area is D (resp. c′7).

Algorithm 2: Centroid-based CPD Construction

Input : Navigation mesh
Output : A Centroid-based CPD
Initialization: CN ← ∅

1 for each traversable polygon P of the mesh do
2 R← minimum bounding rectangle of P ;
3 for each hexagon of the hexagonal tiling of R do
4 ci ← centroid of the hexagon;
5 if ci is inside P then
6 CN ← CN ∪ ci;
7 if the hexagon overlaps P but ci is outside P then
8 c′i ← closest point of P from ci;
9 CN ← CN ∪ c′i;

10 insert convex vertices of P in CN if not already present;

11 construct a CPD using CN as candidate nodes and return;

4.2.1. Building the Centroid-based CPD

We need to fill each polygon of the navigation mesh with centroids such that the circles centred at these
centroids with radii δ cover every point in the polygon. The main objective here is to cover the polygon with
a minimal number of such circles. This problem belongs to the class of covering problems many of which
are shown to be NP-Complete [27]. Next, we describe a greedy algorithm (Algorithm 2) based on hexagon
tiling.

First, we create a set of candidate nodes CN which will be used for CPD construction. CN is initially
empty and the algorithm iteratively accesses each traversable polygon P of the navigation mesh (line 1) to
populate CN as follows. Let R be the minimum bounding rectangle of the polygon. We use hexagonal tiling
to cover the rectangle R such that the circumradius of each hexagon (i.e., the radius of its circumscribing
circle) is δ, e.g., see the hexagon tiling in Fig. 8 (i). Since these hexagons completely cover the polygon,
their circumscribing circles also completely cover the polygon. For each hexagon, we insert its centroid ci
in CN if the centroid is within the polygon P (line 6), e.g., in Fig. 8 (i), c1, c2, c5, and c6 are inside P and
inserted in CN . If the hexagon overlaps P but its centre ci is outside P , we find the closest point from ci on
P (denoted c′i) and insert it in CN , e.g., c′3, c′4, c′7, c′8 and c′9 in Fig. 8 (i) are inserted in CN . It is easy to
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Algorithm 3: Centroid-based Path Extraction

Input : s: start, t: target, CPD: compressed-path-database
Output : a bounded suboptimal path from s to t
Initialization: cp← ∅

1 cs ← getClosestCentroid(s);
2 ct ← getClosestCentroid(t);
3 sp(cs, ct)← cpd(cs, ct);
4 refine the path sp(s, cs)⊕ sp(cs, ct)⊕ sp(ct, t) and return

show that the circles centred at these moved centroids still completely cover the polygon. Finally, all convex
vertices of P are inserted in CN if not already present (line 10). In Fig. 8 (ii), A, D and K are inserted.

Once all traversable polygons are processed as described above, a CPD is constructed using the set of
candidate nodes CN (line 11) by following the same procedure as described in Section 3.1.2. E.g., in Fig. 8
(ii) CN = {c1, c2, c′3, c′4, c5, c6, c′7, c′8, c′9, A, D, K}. Hereafter, we use “centroid” to refer to candidate nodes in
CN . Note that this CPD stores first moves from each centroid to every other centroid in CN , and only
the convex vertices can be the first moves between any pair of centroids. Also, if two centroids are visible
from each other, E may be used as the first move. As shown later in our experimental study (Table 7), this
results in an excellent compression and reduces the space by up to two orders of magnitude. This is because
the symbols in the first move tables are either convex vertices of the navigation mesh or E .

4.2.2. Online Search

Algorithm 3 outline the pseudocode of our CPE algorithm. First, we find the centroids cs and ct which
are the closest centroids to s and t, respectively. Different approaches may be used to achieve this. We
implement a grid-based fetching approach. Specifically, during pre-processing, we use a grid for each polygon
in the navigation mesh where each cell of the grid stores every centroid of the polygon whose circle overlaps
it. During online search, we identify the grid cell containing s (resp. t) and find the closest centroid recorded
in this cell which is in the same polygon as s (resp. t). The lookup time is linear in the number of centroids
that overlap this grid cell.

Once cs and ct are obtained, we compute the shortest path between cs and ct using the CPD. Since
both cs and ct are nodes in CPD, the number of CPD look ups required to extract this path is linear in the
number of vertices on the shortest path between cs and ct. Then, we obtain sp(s, cs)⊕ sp(cs, ct)⊕ sp(ct, t)
where sp(s, t) denote the shortest path from s to t and ⊕ is a concatenation operator.

Theorem 2. If the centroid-based CPD is constructed using δ = ε/4, then the length of sp(s, cs)⊕sp(cs, ct)⊕
sp(ct, t) is at most |sp(s, t)|+ ε.

Proof. We show that the length of the path, |bsp(s, t)| = d(s, cs)+|cpd(cs, ct)|+d(ct, t), is at most |sp(s, t)|+ε.
Due to the triangle inequality, we have |cpd(cs, ct)| ≤ d(cs, s) + |sp(s, t)| + d(t, ct). Therefore, we have
|bsp(s, t)| ≤ 2 · d(s, cs) + |sp(s, t)| + 2 · d(ct, t). The hexagon tiling ensures that the circles centred at all
centroids with radii δ cover every point in the map. Hence, for any points p, its closest centroid is no further
than δ, i.e., d(s, cs) ≤ δ and d(ct, t) ≤ δ. Therefore, we have |bsp(s, t)| ≤ |sp(s, t)|+ 4δ ≤ |sp(s, t)|+ ε.

Consider the example of Fig. 9. We first get the closest centroids c18 and c13 from s and t, respectively.
Then, the centroid-based CPD is used to extract an optimal path from c18 to c13 (i.e., 〈c18, O, c13〉 ). The
bounded suboptimal path is then 〈s, c18, O, c13, t〉 (shown using blue lines in the figure).

Path Refinement: Although the path generated by the approach described earlier is bounded, we can
further improve the path quality by string pulling. We describe how to refine the path from the source
end. Let v be the first vertex after cs on the unrefined path sp(s, cs) ⊕ sp(cs, ct) ⊕ sp(ct, t). We use string
pulling to refine the subpath 〈s, cs, v〉. To implement the string pulling, we use a combination of the funnel
algorithm [28] and our CPD. Specifically, we use the funnel algorithm to find the first turning point p on the
refined path from s to v. Since p must be a vertex in the CPD, we can use the CPD to obtain the optimal
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Figure 9: An example of Cenroid Path Extraction (CPE) that runs on a centroid-based CPD with δ = 3. The
bounded suboptimal path found by CPE is shown as blue. The final refined path of CPE, as well as the optimal
path between s to t, are shown as red.

path from p to v. Thus, the subpath 〈s, cs, v〉 is refined as sp(s, p)⊕ sp(p, v). After the path is refined, we
use a similar approach to refine the path from the target end.

To find the first turning point p from s to v, the funnel algorithm iteratively accesses the mesh edges
that intersect with the subpath 〈s, cs, v〉 in this order (from s to v). It also maintains a maximal visible
interval I = [vl, vr] where vl and vr correspond to the left and right most vertices, respectively, visible from
s through the accessed edge. The algorithm terminates when the accessed edge is completely invisible from
s via I and returns vl (resp. vr) if the invisible edge is on the left (resp. right) of I = [vl, vr].

In the example of Fig. 9, the blue path is refined as follows. The first vertex on the blue path after
c18 is O. Therefore, we use string pulling to refine the subpath 〈s, c18, O〉. The funnel algorithm follows the
subpath 〈s, c18, O〉 and finds intersected mesh edges DG, DK and AO in this order. The algorithm initializes
the maximal visible (from s) interval I as [D, G]. When it processes the next intersecting edge DK, it updates
I to be [D, K] since the whole edge is visible from s. It then proceeds to process the edge AO. Since AO is
completely invisible from s via I = [D, K] and AO is towards the left of I (i.e., node D), the funnel algorithm
returns D as the first turning point on the path from s to O. We use the CPD to compute the path from D to
O which happens to be 〈D, O〉. Therefore, the subpath 〈s, c18, O〉 is refined to 〈s, D, O〉. Similarly, the subpath
from the target end (i.e., 〈t, c13, O〉) is refined to 〈t, O〉. Thus, the final refined path is 〈s, D, O, t〉 (shown using
red lines in the figure).

4.3. Experiments

We run experiments on the same benchmarks and machine as described in Section 3.3. We compare
our suboptimal algorithms (SEPS and CPE) with SUB-N-T [24] (briefly described in Section 3.3). We also
compare with SUB-N-A [24] which is the same as SUB-N-T except that it uses A* instead of Theta-A*.
For our SEPS, we refine the path by using the same path refinement technique of CPE. i.e., given a path
sp(s, vs)⊕ sp(vs, vt)⊕ sp(vt, t) returned by SEPS and let v be the first turning vertex after vs, we refine the
subpath 〈s, vs, v〉 if it is not taut. We refine the path in a similar way for the target end. For both SUB-N-T
and SUB-N-A, as suggested in [24], we use path smoothing to improve the path quality.

Experiment 1: Centroid-based CPD Statistics. In order to construct them faster, our centroid-based
CPDs were built on 32 cores Nectar research cloud with 64 GB of RAM and running Ubuntu 18.04 LTS
(Bionic) amd64. Table 7 shows the average and maximal number of centroids, the raw size of the first move
tables (e.g., without compression), as well as the size of the CPD with (i.e., M) or without E (i.e., M \ E)
symbols, and its building time for the four benchmark suites. Clearly, our centroid-based CPDs are cheap
to build and memory efficient for large radii (i.e., δ = 4, 8). On the other hand, when the radius is small
(i.e., δ = 1, 2), our centroid-based CPDs require more pre-processing time and space. In later experiments,
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CPE(δ=1) CPE(δ=2) CPE(δ=4) CPE(δ=8)

Map Stat Avg Max Avg Max Avg Max Avg Max

DAO C 14294.705 87898 5577.500 34404 3129.910 19059 2341.621 14079
T 1.109 29.474 0.178 4.662 0.061 1.486 0.036 0.873
R 1961.839 30904.233 293.112 4734.540 90.923 1452.981 50.574 792.872
M\E 122.745 1900.786 15.885 208.670 3.831 53.326 1.688 23.585
M 27.318 536.143 6.467 120.143 2.308 38.942 1.213 19.043

DA2 C 10557.328 29008 4094.597 11701 2211.462 7343 1608.164 5959
T 0.251 2.120 0.042 0.431 0.014 0.149 0.009 0.130
R 651.578 3365.856 97.233 547.653 28.752 215.678 15.664 142.038
M\E 40.726 189.284 5.561 21.793 1.382 5.593 0.627 2.768
M 7.921 30.164 2.033 7.231 0.762 3.018 0.418 1.780

BG C 36570.453 94750 11590.760 31316 4511.653 15998 2449.186 11423
T 2.763 26.548 0.250 2.080 0.047 0.589 0.019 0.332
R 6100.325 35910.250 619.045 3922.767 102.595 1023.744 37.330 521.939
M\E 723.109 2049.922 142.178 1943.864 15.081 153.247 2.858 14.774
M 74.253 442.378 14.857 67.309 3.807 19.536 1.390 10.161

SC C 149261.360 469291 52441.946 173836 25505.546 92309 17263.480 66775
T 130.440 1013.990 13.255 98.862 2.836 25.950 1.284 13.265
R 114718.511 880936.170 14302.496 120875.819 3476.542 34083.805 1638.570 17835.602
M\E 1061.652 2099.440 502.036 2017.235 92.047 397.907 31.269 133.774
M 635.166 3966.987 143.700 850.968 45.803 257.136 21.087 105.182

Table 7: Number of (C)entroids, building (T)ime in minutes, (R)aw memory (first-move tables without compression)
in MB, and (M)emory usage without/with (E) symbol in MB, for different radius δ over four benchmarks.

we will show that the variation of radius in the centroid-based CPDs has only a minor effect on the running
time of our CPE algorithm, but may result in worse path quality for larger radius. Therefore, there is a
trade-off between the sub-optimality requirements and the memory limitations and a decision regarding the
radius can be made considering the specific requirements of the application.

Compared with the raw memory, our CPD compression reduces the size of the first move tables by up to
five hundred times, and allows CPDs even with a small radius (i.e., δ = 1 or 2) to fit into the main memory
of modern devices. In addition, we also observe that the E symbols significantly improve the size by a few
factors on average, especially when the radius is small (i.e., δ = 1 or 2), because there exists many centroids
that are co-visible and without the E symbols, they do not compress well.

Experiment 2: Query Processing Time. In Table 8, we compare the average query processing time
for our CPE algorithm using different radii (i.e., δ = 1, 2, 4, and 8) against the competitors. Table 8
shows that CPE significantly outperforms all competitors in all settings. Specifically, CPE is around one
order of magnitude faster than SUB-N-T, SUB-N-A and optimal EPS, and is several times faster than the
suboptimal EPS, i.e., SEPS(ε=32), SEPS(ε = 8%). The SEPS with relative bound ε = 8% matches the same
sub-optimality with SUB-N-T and SUB-N-A, because the shortest grid paths are at most 8% longer than
the optimal any-angle path [4]. We also observe that the query processing time of CPE is not significantly
affected with the change in δ. This is because CPE needs to extract only one path using the CPD and the
size of the CPD does not significantly affect the performance because the number of first move extractions
is small. Also, the query time of CPE is dominated by the cost of getting the closest centroids from s and t.
Note that the path refinement is cheap for both CPE and SEPS which is mainly because, we only use string
pulling to find the first turning vertex, and make use of CPDs to quickly recover the rest of the path. The
refinement time for CPE is even cheaper because, in most of the cases, the first vertex after cs (resp. before
ct) is visible from s (resp. t) resulting in cheap string pulling that behaves like a simple line-of-sight check.

In Fig. 10, we extend the comparison to show the cactus plots for each competing algorithm over four
different benchmarks. Note that for our CPE and SEPS algorithms, we also include the path refinement
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CPE(δ=1) CPE(δ=2) CPE(δ=4) CPE(δ=8) SEPS(ε=32) SEPS(ε=8%) EPS SUB-N-T SUB-N-A

Map Q R Q R Q R Q R Q R Q R Q Q Q

DAO 2.244 0.767 2.138 0.758 2.130 0.786 2.166 0.807 4.536 1.459 5.141 1.410 23.905 81.518 31.820

DA2 2.212 0.654 2.083 0.643 2.047 0.657 2.048 0.681 4.121 1.283 4.977 1.215 14.186 31.296 15.458

BG 1.977 0.697 1.912 0.737 1.882 0.690 1.848 0.697 4.051 1.089 4.922 1.026 12.299 33.830 14.328

SC 3.985 1.509 3.523 1.379 3.459 1.547 3.462 1.618 22.049 1.731 14.937 1.766 61.326 252.962 83.379

Table 8: Runtime comparison on the four benchmarks: we show the average (Q)uery processing time (µs) and path
(R)efinement time (µs) for Centroid-based Path Extraction (CPE), and compare with: the Suboptimal EPS (SEPS)
with an absolute bound ε=32 (the same sub-optimality bound as δ = ε/4 = 8) and with a relative bound ε = 8% (the
same sub-optimality bound as SUB-N-T and SUB-N-A); the optimal EPS; and two subgoal graph methods SUB-N-T
and SUB-N-A.
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Figure 10: Runtime comparison on the four benchmarks. The x-axis shows the percentile ranks of queries in number
of node expansions needed by A* search to solve them.

time. Fig. 10 shows that both CPE and SEPS are significantly faster than EPS, SUB-N-T and SUB-N-A.
CPE is the best performing algorithm and scales really well with the increasing difficulty of the queries.

Experiment 3: Path Quality. In this experiment, we compare the path quality for CPE and the
suboptimal EPS against the competitors. Our evaluation is based on the following three measures: (1) The
(O)ptimal ratio (%) that corresponds to the percentage of instances when an algorithm retrieved optimal
paths, i.e., number of queries for which an algorithm returns an optimal path × 100 /total number of queries;
(2) The (S)uboptimality ratio (%) which is the difference between the length of the retrieved path and the
optimal path divided by the length of optimal path (i.e., (cost(retrieved path) − cost(optimal path)) × 100
/ cost(optimal path)); (3)The path (D)ifference which is the difference between the length of the retrieved
path and optimal path. (i.e., cost(retrieved path) − cost(optimal path)).

Effectiveness of path refinement in CPE and SEPS: In Table 9, we compare the path quality
before and after path refinement for our CPE and SEPS algorithms. Clearly, our path refinement strategy
significantly improves the path quality on all three measures. Before the path refinement, the optimality
ratio for both CPE and SEPS are low because: the retrieved path by CPE can never be optimal unless
the closest centroids of both s and t are either turning points on the path or s and t lie on centroids;
and SEPS essentially terminates as soon as it satisfies the suboptimality constraint. However, it is clear
that the optimality ratio is significantly improved after the path refinement and, in fact, most of the paths
returned by CPE are optimal. In addition, we observe that the path refinement also significantly reduces
the average suboptimality ratio (S) and difference (D). Thus, the path refinement is cheap (see Table 8) and
very effective in improving the path quality. Finally, note that the average path difference of our CPE both
before and after path repair is much smaller than the theoretical bound (i.e., 4 × δ). Similarly for SEPS, the
theoretical error bound ε is also larger than the average suboptimality ratio and path difference reported.

Comparison of different algorithms: Table 10 compares the algorithms on the optimal ratio (O) as
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CPE(δ=1) CPE(δ=2) CPE(δ=4) CPE(δ=8) SEPS(ε=32) SEPS(ε=8%)

Map Stat Before After Before After Before After Before After Before After Before After

DAO O(%) 3.110 95.291 3.140 89.409 3.061 80.893 3.077 70.393 3.931 39.283 9.067 44.413
S(%) 1.021 0.001 1.953 0.008 3.398 0.029 5.235 0.072 14.332 1.431 2.888 0.366

D 1.030 0.002 1.990 0.009 3.565 0.031 5.744 0.088 12.771 1.525 10.241 1.126

DA2 O(%) 2.315 96.486 2.342 91.925 2.253 84.061 2.335 74.797 5.625 47.126 12.013 54.842
S(%) 1.036 0.001 1.982 0.005 3.597 0.022 5.661 0.066 14.563 1.340 2.672 0.272

D 1.059 0.001 2.053 0.006 3.714 0.024 5.974 0.074 12.339 1.198 6.750 0.663

BG O(%) 6.053 97.988 6.053 95.392 6.047 91.105 6.080 85.045 9.153 49.024 16.868 56.305
S(%) 0.861 <0.001 1.671 0.002 3.159 0.008 5.352 0.030 12.964 1.292 3.191 0.383

D 1.082 0.001 2.105 0.003 4.020 0.015 7.020 0.052 15.131 1.899 8.478 1.058

SC O(%) 2.161 97.570 2.171 94.275 2.170 88.506 2.169 79.565 7.272 26.844 8.252 27.222
S(%) 0.473 <0.001 0.915 0.001 1.715 0.005 3.088 0.020 6.856 1.447 3.205 0.703

D 1.117 0.001 2.166 0.004 4.104 0.016 7.372 0.059 13.842 3.073 16.921 3.457

Table 9: Our Centroid-based Path Extraction (CPE) and Suboptimal EPS (SEPS), before and after path refinement.
We show (O)ptimal ratio (%): i.e., # optimal path × 100 / # queries; average (S)uboptimality ratio (%): i.e.,
(cost(retrieved path) − cost(optimal path)) × 100 / cost(optimal path) and (D)ifference: i.e., cost(retrieved path)
− cost(optimal path).

CPE(δ=1) CPE(δ=2) CPE(δ=4) CPE(δ=8) SEPS(ε=32) SEPS(ε=8%) SUB-N-T SUB-N-A

Map Stat Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

DAO O(%) 95.291 89.409 80.893 70.393 39.283 44.413 56.303 35.767
S(%) 0.001 12.759 0.008 19.731 0.029 141.421 0.072 89.442 1.431 1623 0.366 7.922 0.093 4.875 0.155 4.945

D 0.002 1.817 0.009 4.007 0.031 6.878 0.088 11.819 1.525 31.834 1.126 53.105 0.504 7.247 0.732 9.642

DA2 O(%) 96.486 91.925 84.061 74.797 47.126 54.842 63.949 48.312
S(%) 0.001 7.701 0.005 6.893 0.022 20.893 0.066 78.046 1.340 470 0.272 7.973 0.096 3.760 0.129 5.475

D 0.001 1.926 0.006 2.985 0.024 6.916 0.074 10.441 1.198 30.491 0.633 63.288 0.354 6.015 0.438 7.295

BG O(%) 97.988 95.392 91.105 85.045 49.024 56.305 82.958 66.343
S(%) <0.001 14.412 0.002 14.412 0.008 14.412 0.030 29.724 1.292 570 0.383 7.797 0.061 5.580 0.115 5.580

D 0.001 1.349 0.003 5.468 0.015 6.436 0.052 15.443 1.899 31.622 1.058 35.113 0.188 14.118 0.348 16.217

SC O(%) 97.570 94.275 88.506 79.565 26.844 27.222 54.780 27.952
S(%) <0.001 4.696 0.001 8.270 0.005 17.082 0.020 49.998 1.447 554 0.703 7.848 0.076 5.156 0.175 5.156

D 0.001 2.576 0.004 3.948 0.016 10.126 0.059 18.062 3.073 30.939 3.457 109.386 0.526 17.580 1.120 19.800

Table 10: Comparing CPE, SEPS, SUB-N-T and SUB-N-A on (O)ptimal ratio (%) as well as average/maximum
(S)uboptimality ratio (%) and (D)ifference.

well as average and maximum suboptimality ratio (S) and path difference (D). Clearly, CPE demonstrates
excellent path quality for all different benchmarks on all measures, e.g., the optimal ratio, average subopti-
mality ratio and average path difference are better than those of SUB-N-T, SUB-N-A, SEPS(ε = 32) and
SEPS(ε = 8%) for different values of δ and remarkably better for smaller δ. SUB-N-A and SUB-N-T are
better in terms of maximum suboptimality ratio. Since CPE returns a path within an absolute bound, the
path quality in terms of suboptimality ratio may be very poor when the start and target are close to each
other but δ is large (i.e., 4 or 8). On the other hand, CPE usually has a smaller maximum path difference
(D) compared to SUB-N-T for δ = 1, 2 or 4. For the SEPS with an absolute bound, SEPS(ε = 32), we see
that the maximum path difference is always close to the theoretical bound ε as our SEPS greedily termi-
nates the search as soon as it explores a path that satisfies the constraint (note that the refinement does
not improve the path quality if the returned path is taut on both ends). This also causes the suboptimality
ratio of the absolute bounded SEPS to be large, especially in terms of maximum suboptimality ratio (which
is mainly due to the queries when start and target are close to each other). The SEPS with a relative
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bound, SEPS(ε = 8%), has the advantage that it allows the search to control the suboptimality ratio within
a certain percentage. However, in this case, it results in large absolute differences in the worst-case (for
queries when start and target are far from each other).

5. Related work

In this section, we categorise the related works into three four categories: any-angle pathfinding; visibility
graph-based path planning; and mesh-based path planning; and centroids-based path planning.

Any-angle Pathfinding: A grid map is a map representation that is commonly used in computer games
and robotics. The grid map discretises the set of obstacles using a fixed resolution grid and represents
the environment as blocked and unblocked cells. Typically, pathfinding on grid maps results in suboptimal
and unrealistic paths as movement is only allowed in certain directions (i.e., horizontal and vertical in a
four-connected grid, or in addition diagonal movement in an eight-connected grid). Any-angle pathfinding
avoids this restriction by allowing movement in any direction and, consequently, finds the paths that are
substantially shorter.

The state of art any-angle pathfinder, ANYA [5], is a fast and online pathfinding algorithm that finds
optimal any-angle path. Anya is an interval-based searching algorithm that instantiates A*. It scans the
grid row by row and finds an optimal path by expanding the most promising intervals in the open list.

Apart from the optimal algorithm Anya, there is also a range of algorithms that find suboptimal any-
angle paths. The state-of-art any-angle suboptimal algorithm is the N-level subgoal graph [24]. The subgoal
graph [12] is constructed by placing subgoals on the convex corners of obstacles. Instead of connecting each
pair of subgoals that are visible to each other, the subgoal graph only connects a small subset of subgoals
that are direct-h-reachable. Two subgoals are h-reachable if there exists a traversal path equal to the octile
distance between them, and they are direct-h-reachable iff all shortest trajectories (octile distance paths) are
traversable with no subgoals between them. The N-level subgoal graph builds, on top of this simple subgoal
graph, a hierarchy that is similar to a contraction hierarchy [29]. Searching in the N-level subgoal graph only
requires connecting the start and target to the corresponding direct-h-reachable subgoals, and then identify-
ing the reachable subgoals from the start to the target through the ascending edges (edges from a subgoal to
its higher-level subgoals). Using the graph consisting of hierarchy of subgoals, one can simply apply an A*
algorithm to find a path quickly, or alternatively apply the Theta* [30] algorithm to search for a path with
better path quality as the edges in this graph may be non-taut. Other way of improving path quality is to
extend the subgoal graph by considering 2k grid neighbours [31], where the path quality can be controlled
using the value of k. The N-level subgoal graph outperforms a range of A*-like suboptimal algorithms for
any-angle pathfinding such as: Theta* [30] which improves the path quality by performing a line-of-sight
check when expanding a search node; Field A* [32] which generalises the ideas from Field D* [33], allowing
a straight-line trajectory from a search node to any of vertices on the boundary of its adjacent grids, and
updates g-value by using linear interpolation; and Block A* [34] which performs a blocks-based A* search
with Local Distance Database, an auxiliary data structure that partitions grid map into m×n equal size of
blocks and stores the distance of optimal paths between any two boundary vertices inside each block.

Visibility Graphs (VG): A visibility graph [35] is constructed by connecting any pairs of co-visible
vertices appearing on the corners of the obstacles. In contrast to grid-based approaches that discretise
the obstacles using a grid, the visibility graph allows obstacles to be precisely represented in Euclidean
space. Hence, it finds the Euclidean optimal path precisely (which is guaranteed to be equal to or shorter
than the any-angle path on grid maps). Search in a visibility graph only requires connecting the start and
target to their set of visible vertices before an A* algorithm can be applied to find the Euclidean optimal
path. However, the visibility graph suffers from two major issues: (1) it requires high memory consumption
because, in the worst-case, the size of the graph is quadratic in the number of corners of the obstacles; and
(2) branching factors of nodes in the graph is high and, consequently, the search is unlikely to be efficient.

Sparse visibility graphs (SVG) [8] focus on addressing the above mentioned two major issues and im-
prove over the original visibility graph by removing unnecessary edges (i.e., a non-turn edge vivj where the
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angle from vi to vj does not allow turning around the polygon defining vertex vj) and non-convex vertices.
This modification allows the graph to fit into the memory even for the large maps. It also reduces the
branching factor on graph nodes and makes search more efficient. Edge N-Level Sparse Visibility Graphs
(ENLSVG) [8] build a hierarchy by iteratively removing the non-taut paths. Such a hierarchy partitions the
SVG into multiple levels where, in each level, edges only have taut neighbouring paths to the edges in the
higher levels. ENLSVG restricts the search to only consider the edges that increase the levels from both
ends. This results in searching in a smaller taut-path graph which improves the performance further.

Some existing works such as SUB-N-T/SUB-N-A [24, 12] and ENLSVG [8] improve the underlying graph
by building a hierarchy similar to the contraction hierarchies (CH) [29], and enhance the performance by
allowing the search to consider “shortcuts” between different levels of the hierarchy. As shown in a recent
paper [36] on road networks, constructing a CPD on top of these hierarchies improves the performance as
this allows the first-move to be a shortcut which effectively reduces the number of first-move extractions
needed to recover the whole path. We believe that such a hierarchy-compressed CPD should also improve
our EPS for optimal and suboptimal search and CPE for suboptimal search. We leave it as future work.

Mesh-based Planners: Mesh-based planners work by pre-processing the non-obstacle regions of the map
into a set of convex polygons, called a navigation mesh. Such techniques combine the strengths of any-angle
pathfinding and visibility graph. The state-of-art mesh-based path planner is Polyanya [7] which is a fast,
online, and optimal pathfinding algorithm that extends and generalises Anya. We present the details of
Polyanya in Section 2.2. Polyanya outperforms a range of pathfinding algorithms that work on Constrained
Delaunay Triangulation [37] (CDT), a type of navigation mesh where the non-obstacle regions are modelled
as triangles. We discuss a number of these methods below.

Channel search [38] finds a shortest channel between start and target from the CDT by using a modified
A* algorithm. The search begins from the triangle that contains the start, and always considers the midpoint
of the non-constrained edges as neighbours to expand the search nodes. The search terminate when it
reaches the target and applies the funnel algorithm [28] to retrieve a local optimal path within the channel.
Channel search is fast and easy to implement but can return suboptimal paths. Triangulation A* (TA*) [6]
works in a way similar to the channel search. However, instead of terminating the search immediately,
TA* takes the cost of the best path found so far as an upper bound. It continuously explores the most
promising channel and updates the upper bound. TA* terminates when either the search is exhausted or
the lower bound (i.e., f -value) of the search becomes greater than this upper bound. Thus, it guarantees
to find the Euclidean optimal path for any given start and target. Triangulation Reduction A* (TRA*) [6]
enhances TA* by preprocessing the CDT into an abstract graph which is small, but allows the search to
find the most promising channel quickly. Note that both TA* and TRA* are any-time algorithms since
these algorithms can return suboptimal paths encountered during the search. Both TA* and TRA* are
significantly outperformed by Polyanya [7], therefore, we do not directly compare with these in this paper.

Hechenberger et al. propose RayScan [22], a ray-casting based ESPP algorithm that is purely online and
requires no additional structure to support the search (not even a navigation mesh). The main idea of the
algorithm is to use ray-casting from the current search node towards the target until an obstacle impedes
the ray in which case the algorithm scans the perimeter of the obstacle to find the turning points. RayScan
runs slower than Polyanya if the navigation mesh is already available. However, RayScan is useful when the
navigation mesh is not available (or when the environment is dynamically updated which makes the existing
mesh invalid requiring a repair of the mesh).

Centroids: The use of centroids to generate bounded suboptimal paths has been previously explored for
grid maps [39]. There the focus is avoiding creating an enormous CPD for large grid maps, by using centroids
to act as abstract target points, and the main technical emphasis is on using “reverse” CPDs and producing
these only for centroid targets. Unlike the traditional CPD which compresses first-moves table for a given
source s containing first-moves from s to every t ∈ V , a reverse CPD compresses first-moves table for a
given target t containing first-moves to t from every s ∈ V . In contrast to [39], we use centroids to partition
Euclidean space, and build a traditional CPD on the graph of centroids to allow fast bounded suboptimal
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path planning, by connecting start and target points to the centroid graph.

6. Conclusions

We introduce new approaches to Euclidean path finding based on Compressed Path Databases (CPD).
Our optimal algorithm, End Point Search (EPS), substantially improves the state-of-the-art for optimal Eu-
clidean shortest paths and also has impressive anytime behaviour. It makes use of powerful CPD approaches
to handle path finding on the visibility graph, and an efficient incremental attachment of the end points to
this graph, to quickly find high quality solutions, and prove optimality fast. The bounded suboptimal vari-
ant, Centroid-based Path Extraction (CPE), is several times faster than EPS for finding (absolute) bounded
suboptimal paths. It allows us to tradeoff the suboptimality bound versus the size of the resulting CPD. In
practice its behaviour is much better than the theoretical bound, with ≈90% of paths found being optimal
for δ = 2.
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[5] D. D. Harabor, A. Grastien, D. Öz, V. Aksakalli, Optimal any-angle pathfinding in practice, Journal of Artificial Intelli-

gence Research 56 (2016) 89–118.
[6] D. Demyen, M. Buro, Efficient triangulation-based pathfinding, in: Proceedings, The Twenty-First National Conference

on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006,
Boston, Massachusetts, USA, AAAI Press, 2006, pp. 942–947.

[7] M. Cui, D. D. Harabor, A. Grastien, Compromise-free pathfinding on a navigation mesh, in: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
ijcai.org, 2017, pp. 496–502.

[8] S. Oh, H. W. Leong, Edge n-level sparse visibility graphs: Fast optimal any-angle pathfinding using hierarchical taut
paths, in: Proceedings of the Tenth International Symposium on Combinatorial Search, SOCS 2017, 16-17 June 2017,
Pittsburgh, Pennsylvania, USA, AAAI Press, 2017, pp. 64–72.

[9] E. A. Hansen, R. Zhou, Anytime heuristic search, Journal of Artificial Intelligence Research 28 (2007) 267–297.
[10] A. Botea, Ultra-fast optimal pathfinding without runtime search, in: Proceedings of the Seventh AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2011, October 10-14, 2011, Stanford, California, USA,
The AAAI Press, 2011.

[11] B. Strasser, D. Harabor, A. Botea, Fast first-move queries through run-length encoding, in: Proceedings of the Seventh
Annual Symposium on Combinatorial Search, SOCS 2014, Prague, Czech Republic, 15-17 August 2014, AAAI Press, 2014.

[12] T. Uras, S. Koenig, C. Hernández, Subgoal graphs for optimal pathfinding in eight-neighbor grids, in: Proceedings of the
Twenty-Third International Conference on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-14,
2013, AAAI, 2013.

[13] AI Game Programming Wisdom 4, Charles River Media, 2008.
[14] M. Kallmann, M. Kapadia, Navigation meshes and realtime dynamic planning for virtual worlds, in: ACM SIGGRAPH

2014 Courses, ACM Press, 2014, p. 3.
[15] M. Kallmann, Path Planning in Triangulations, in: IJCAI Workshop on Reasoning Representation and Learning in

Computer Games, 2005.
[16] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE

transactions on Systems Science and Cybernetics 4 (2) (1968) 100–107.
[17] M. Chiari, S. Zhao, A. Botea, A. E. Gerevini, D. Harabor, A. Saetti, M. Salvetti, P. J. Stuckey, Cutting the size of

compressed path databases with wildcards and redundant symbols, in: Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019, AAAI Press,
2019, pp. 106–113.

23



[18] B. Strasser, A. Botea, D. Harabor, Compressing optimal paths with run length encoding, Journal of Artificial Intelligence
Research 54 (2015) 593–629.

[19] Y.-H. Liu, S. Arimoto, Path Planning Using a Tangent Graph for Mobile Robots Among Polygonal and Curved Obstacles,
International Journal of Robotics Research 11 (1992) 376–382.

[20] T. Young, Optimizing Points-of-Visibility Pathfinding, in: Game Programming Gems 2, Charles River Media, 2001, pp.
324–329.

[21] R. C. Holte, A. Felner, G. Sharon, N. R. Sturtevant, Bidirectional search that is guaranteed to meet in the middle, in:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,
AAAI Press, 2016, pp. 3411–3417.

[22] R. Hechenberger, P. J. Stuckey, D. Harabor, P. L. Bodic, M. A. Cheema, Online computation of euclidean shortest paths
in two dimensions, in: Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling,
Nancy, France, October 26-30, 2020, AAAI Press, 2020, pp. 134–142.

[23] N. R. Sturtevant, Benchmarks for grid-based pathfinding, IEEE Transactions on Computational Intelligence and AI in
Games 4 (2) (2012) 144–148.

[24] T. Uras, S. Koenig, Speeding-up any-angle path-planning on grids, in: Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015, AAAI Press, 2015,
pp. 234–238.

[25] A. Nash, K. Daniel, S. Koenig, A. Felner, Theta*: Any-angle path planning on grids, in: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, AAAI Press,
2007, pp. 1177–1183.

[26] B. Shen, M. A. Cheema, D. Harabor, P. J. Stuckey, Euclidean pathfinding with compressed path databases, in: Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, ijcai.org, 2020, pp. 4229–4235.

[27] R. J. Fowler, M. Paterson, S. L. Tanimoto, Optimal packing and covering in the plane are np-complete, Inf. Process. Lett.
12 (3) (1981) 133–137.

[28] J. Hershberger, J. Snoeyink, Computing minimum length paths of a given homotopy class, Comput. Geom. 4 (1994) 63–97.
[29] R. Geisberger, P. Sanders, D. Schultes, D. Delling, Contraction hierarchies: Faster and simpler hierarchical routing in road

networks, in: Experimental Algorithms, 7th International Workshop, WEA 2008, Provincetown, MA, USA, May 30-June
1, 2008, Proceedings, Vol. 5038 of Lecture Notes in Computer Science, Springer, 2008, pp. 319–333.

[30] A. Nash, K. Daniel, S. Koenig, A. Felner, Theta*: Any-angle path planning on grids, in: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, AAAI Press,
2007, pp. 1177–1183.
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