
Unsupervised Space Partitioning for Nearest Neighbor Search
Abrar Fahim

Bangladesh University of
Engineering and Technology

Dhaka, Bangladesh
1605075@ugrad.cse.buet.ac.bd

Mohammed Eunus Ali
Bangladesh University of

Engineering and Technology
Dhaka, Bangladesh

eunus@cse.buet.ac.bd

Muhammad Aamir Cheema
Faculty of Information Technology,

Monash University
Australia

aamir.cheema@monash.edu

ABSTRACT
Approximate Nearest Neighbor Search (ANNS) in high dimen-
sional spaces is crucial for many real-life applications (e.g., e-
commerce, web, multimedia, etc.) dealing with an abundance of
data. This paper proposes an end-to-end learning framework that
couples the partitioning (one critical step of ANNS) and learning-
to-search steps using a custom loss function. A key advantage of
our proposed solution is that it does not require any expensive
pre-processing of the dataset, which is one of the critical limi-
tations of the state-of-the-art approach. We achieve the above
edge by formulating a multi-objective custom loss function that
does not need ground truth labels to quantify the quality of a
given data-space partition, making it entirely unsupervised. We
also propose an ensembling technique by adding varying input
weights to the loss function to train an ensemble of models to
enhance the search quality. On several standard benchmarks
for ANNS, we show that our method beats the state-of-the-art
space partitioning method and the ubiquitous K-means clustering
method while using fewer parameters and shorter offline training
times. We also show that incorporating our space-partitioning
strategy into state-of-the-art ANNS techniques such as ScaNN
can improve their performance significantly. Finally, we present
our unsupervised partitioning approach as a promising alterna-
tive to many widely used clustering methods, such as K-means
clustering and DBSCAN.

1 INTRODUCTION
𝐾-Nearest Neighbor Search (𝑘-NNS) that finds the 𝑘 closest (or
most similar) data points for a given query point in a high-
dimensional space is a well-studied problem [4, 42, 45, 46]. The
vast amount of high-dimensional data that applications have to
deal with today and an ever-greater need to quickly search for
relevant content necessitate a scalable and efficient search solu-
tion for many domains, including multimedia, e-commerce, and
recommendation systems. Exact solutions to the 𝑘-NNS problem,
where we seek the exact 𝑘 nearest neighbors, are challenging
and computationally intractable due to the phenomenon of the
curse of dimensionality [19]. Thus, they are not practical for many
applications. Recent research has shifted to Approximate Nearest
Neighbors Search (ANNS) [4, 5, 33] to scale the NNS solution
to larger datasets with more dimensions. ANNS aims to quickly
find as many of the true nearest neighbors of the query point
as possible by slightly trading off the returned answer’s accu-
racy. This paper proposes an end-to-end unsupervised learning
solution using neural networks to solve the ANNS problem.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The established way to search for the k-Nearest-Neighbors
(k-NNs) is to first reduce the search space for finding the most rel-
evant points using indexing methods (such as KD-trees [7], quan-
tization using K-means [22], PCA trees [1, 43], LSH [3, 30] etc.),
and then to speed up the searchwithin those relevant points using
sketching methods (e.g., ScaNN [16], ITQ [15], etc.). This paper
focuses on improving the indexing part to speed up ANNS. Most
existing indexing approaches rely on algorithmic constructions
that are either entirely independent or only weakly dependent
on the data distribution (e.g., KD-trees [7], LSH [3, 30], random
trees [9, 24]). These approaches cannot correctly curate the cre-
ated partitions to specific data distributions. Notably, K-means
clustering, a simple and prominent approach for clustering used
in the implementation of the state-of-the-art ANNS technique
ScaNN [16], can only form convex (mostly spherical) clusters of
the dataset. These simple cluster shapes may not be sophisticated
enough to represent more complex data distributions.

Recently, there has been an increased interest in machine-
learning-based solutions (particularly supervised learning) for in-
dex creation on the data to facilitate efficient search. Notably, [23,
26] argue the case for learning index structures and show the
benefits and potential of replacing core components of database
systemswith learnedmodels. A recent approach,Neural LSH [11],
uses neural nets and graph partitioning to create a space parti-
tioning index, which divides the ambient space of the dataset into
smaller parts. Neural LSH outperforms previous data partitioning
baselines. Neural LSH first creates a 𝑘-NN graph from the dataset
and then partitions the graph to divide the dataset into several
bins using a combinatorial graph-partitioning algorithm [40].
Using the resulting graph partition, it trains a neural network
to learn to classify new query points into specific bins of the
partition. By assigning query points to specific bins, Neural LSH
restricts the further search to the data points within the query’s
assigned bins to find the nearest neighbors. This approach has
several shortcomings: (i) Ground truth labels needed to train the
model are generated in a separate pre-processing step, (ii) the
graph-partitioning algorithm used to create the ground truth
labels takes hours on million-sized datasets, and most impor-
tantly, (iii) the neural network is only used to learn to classify
query points into bins, with the partitioning step not forming a
part of the learning pipeline. As a result, Neural LSH does not
capitalize on the power of function approximation in creating
space-partitioning indexes.

To address the limitations of traditional (e.g., LSH, K-means
clustering, etc.) and learning-based (e.g., Neural LSH) partitioning
solutions, we propose an end-to-end learning solution for scalable
and efficient ANNS. The key intuition of our approach is that we
can create superior partitions of the dataset by having the neural
network itself learns the partition in an unsupervised manner.
We do this by devising a customized cost function, enabling
the neural network to learn the partition without generating
prior training labels. We also propose an ensemble approach that
allows us to merge multiple complementary partitions to improve

indexing performance. Even though we primarily design our
approach to solve the ANNS problem, without loss of generality,
our unsupervised partitioning approach is a promising alternative
to many widely used clustering methods like K-means clustering,
DBSCAN [12], and spectral clustering [35].

We conduct extensive experiments with two standard Nearest
Neighbor Search (NNS) benchmark datasets [5], which show that
our proposed approach yields 5− 10% performance improvement
over the current state-of-the-art models. Moreover, we show that
by incorporating our unsupervised space partitioning strategy,
we can improve the performance of the current best-performing
ANNS method, namely ScaNN, by approximately 40%.

In summary, our contributions in this work are as follows.

• We introduce an end-to-end learning framework for learn-
ing partitions of the dataset without any expensive pre-
processing steps.

• We couple the partitioning and learning stages into a single
step to make both the components aware of each other,
increasing the overall framework’s training efficiency.

• We introduce a custom loss function that can score output
partitions and is differentiable. This loss function ismodel-
agnostic and thus can be applied to any machine learning
architecture (including neural networks) to learn a richer
class of division boundaries.
In our experiments (Section 5), we show that our loss
function makes any model learn better partitions than
those created by the baseline methods in most real-world
settings.

• We propose an ensembling technique by adding varying
input weights to the loss function to train an ensemble
of models to create multiple high-quality complementary
partitions of the same dataset, which enhances indexing
performance.

We organized the rest of this paper as follows: We first discuss
some related work in the field of similarity search in Section 2.We
then formally define the approximate 𝑘-nearest neighbor search
problem in Section 3. Then, in Section 4, we discuss our learning-
based approach for space partitioning and Nearest Neighbor
Search (NNS) in detail. We present our experiments by comparing
the performance of our method with other space-partitioning
baselines in Section 5. Finally, we close with a summary of our
contributions in Section 6.

2 RELATEDWORK
The two major paradigms to solve the ANNS (or NNS) problem
are indexing and sketching.

Indexing methods generally construct a data structure that,
given a query point 𝑞, returns a subset of the dataset called a
candidate set that includes the nearest neighbors of the 𝑞. On
the other hand, sketching methods compress the data points
to compute approximate distances quickly [29, 39, 45, 46]. The
two paradigms are often combined in real-world applications to
maximize the overall performance [16, 21, 47].

2.1 Sketching: Making Distance Computations
Faster

In the sketching approach, we compute a compressed represen-
tation of the data points to transform the dataset from R𝑑 to R𝑑

′
,

such that distances in R𝑑 are preserved in R𝑑
′
. This transforma-

tion makes each distance computation between the query point

and a data point easier since distances are now computed in R𝑑
′

instead of in R𝑑 (𝑑′ < 𝑑). In order to find the nearest neighbors
under this paradigm, the whole dataset (compressed version) still
needs to be scanned and distances computed between all points
in the dataset and the query point.

Machine learning methods have been instrumental in the
sketching approach. Most machine learning methods use a fairly
simple optimization objective to minimize reconstruction error in
the lower dimensional space to preserve distances in the higher
dimensional space. There have been many such works under
"Learning toHash." [45, 46].We highlight the recentwork ScaNN [16],
which develops a novel quantization loss function that outper-
forms previous sketching methods and forms the current state-
of-the-art in the sketching domain.

2.2 Indexing: Reducing the Search Space
Under the indexing paradigm, we discuss graph-based and space-
partitioning approaches. We then explore the benefits of learning
space-partitions for indexing.

2.2.1 Graph-Based Approaches. Graph-based algorithms are
one class of algorithms that reduce the number of points to search
through. Graph-based algorithms [13, 17, 18, 32] construct a
graph from the dataset (can be a 𝑘-NN graph) and then perform a
greedy walk for each query, eventually converging on the nearest
neighbor(s). While graph-based methods are very fast, they have
suboptimal locality of reference and access the datasets adap-
tively in rounds. This makes graph search not ideal in modern
distributed systems that often store the data points in an external
storage medium since access to that medium could be very slow
relative to searching and processing indices of data points [11].

2.2.2 Space PartitioningMethods. Another class of algorithms
is space-partitioning algorithms. These methods partition the
search space into several bins by dividing the ambient space of
the dataset R𝑑 . In this paper, we focus on the space-partitioning
approach. Given a query point 𝑞, we identify the bin containing
𝑞 and produce a list of nearby candidates from the data points
present in the same bin (or, to boost the k-NN recall, in nearby
bins as well).

Space partitioning methods have numerous benefits [11]. First,
they are naturally applicable in distributed settings, where dif-
ferent machines can store points in different bins. Furthermore,
each machine can do a nearest neighbor search locally using
other NNS methods to speed up the search further. Finally, unlike
graph-based methods, space partitioning/data clustering meth-
ods only access the data points in one shot, only requiring access
to the dataset points once it finds a candidate set and identifies
the relevant points within it.

Popular space partitioning methods include LSH [3, 10, 30],
Quantization-based approaches, where partitions are obtained
using K-Means clustering of the dataset [22], and tree-based
approaches such as random-projection or PCA trees [6, 9, 24, 43].

Classical space-partitioning algorithms like LSH [3, 10, 30],
KD-trees, and random projection trees [8, 9] cannot effectively
optimize a partition to a specific data distribution. In our experi-
ments in Section 5, we show that these approaches (especially
LSH and random trees projection trees) perform poorly com-
pared to the other baselines. To create partitions better tailored
to individual data distributions, we now look into learning based
methods for space partitioning.

2.3 Learning Indexes for Space Partitioning
There has been some prior work on incorporating machine learn-
ing techniques to improve space partitioning in [7, 28, 38]. We
highlight in particular the work in [28], termed Boosted Search
Forest, which introduces a custom loss function similar to our
method. However, Boosted Search Forest, like [7] and [38], can
only learn hyperplane partitions to split the dataset. This limits
their partitioning performance as hyperplanes may not be suffi-
cient to split more sophisticated data distributions. In contrast,
our loss allows any machine learning model to learn a wider
class of partitions for a dataset. Moreover, using our loss, even
a simple logistic regression model can learn better hyperplane
partitions than these prior learning approaches, indicating that
our loss function can better score partitions than the loss used in
Boosted Search Forest.

A recent relevant work, Neural LSH [11] uses supervised learn-
ing with neural networks to create a space partitioning index by
first creating a k-NN graph of the input dataset and running a
combinatorial graph partitioning algorithm to obtain a balanced
graph partition. The graph partition divides the dataset into sev-
eral bins. It then trains the neural network to correctly classify
out-of-sample query points to specific bins of the partition.

Apart from the above, other notable recent works on learned
indexes such as Flood [34] and Tsunami [34] are summarized
in [2]. While these learned indexes are very efficient, they do not
scale well to high-dimensional datasets, which is our focus in
this paper.

3 PROBLEM DEFINITION
Let R𝑑 be a 𝑑-dimensional space. Given a dataset 𝑋 = {𝑝1, ..., 𝑝𝑛}
of size 𝑛 in R𝑑 and a query point 𝑞 ∈ R𝑑 , 𝑘-nearest neighbor
search returns the top-𝑘 ranked points from 𝑋 that are the most
similar to the query point 𝑞. We can use the Euclidean dis-
tance or any custom distance function to define the distance
between any two points, 𝑥 and 𝑦, in the data space. For exam-
ple, if the distance function 𝐷 is Euclidean distance, then we
define the distance between 𝑞 and data point 𝑝𝑖 as 𝐷 (𝑞, 𝑝𝑖) =√︃
(𝑞1 − 𝑝1

𝑖
)2 + (𝑞2 − 𝑝2

𝑖
)2 + · · · + (𝑞𝑑 − 𝑝𝑑

𝑖
)2. Inmodern large-scale

applications, either 𝑛, 𝑑 , or both are large, with 𝑛 often being
billions or more. When answering nearest neighbor queries
in real-time, explicitly computing 𝐷 (𝑞, 𝑝𝑖) for all points in the
dataset can be prohibitively expensive. If 𝑛 is large, traversing
the whole dataset to find 𝑘-NN is intractable, and if 𝑑 is large,
computing the 𝐷 function itself is time-consuming for each data
point.

Thus, in Approximate 𝑘-Nearest Neighbor Search (ANNS), we
relax the requirement of retrieving the exact top-k ranked points
from 𝑋 w.r.t 𝑞. In ANNS, we return 𝑘 points close to 𝑞, ensuring
that as many of them are the true 𝑘-nearest neighbors of 𝑞 as
possible. Let 𝑁 ′

𝑘
(𝑞) be the answer set of 𝑘 data points returned

by the ANNS, and 𝑁𝑘 (𝑞) be the answer set of true 𝑘-NN for the
query point 𝑞. Thus, in the ANNS, we aim to maximize k-NN
accuracy of the answer set, where,

k-NN accuracy =
|𝑁 ′

𝑘
(𝑞)⋂𝑁𝑘 (𝑞) |

𝑘
(1)

4 OUR METHOD
This section presents the details of our proposed method to solve
the ANNS problem using an unsupervised learning-based ap-
proach. First, we give a high-level overview of the proposed

approach. We then discuss the details of the different core compo-
nents of the system. Finally, we present a couple of enhancements
that include ensembling and hierarchical partitioning schemes.

In this work, we improve upon the state-of-the-art partitioning
method Neural LSH [11]. Neural LSH takes hours to preprocess
a million-sized dataset to generate training labels to pass to the
neural network. In contrast, our model takes less than two hours
to learn high-quality partitions, even on constrained hardware
resources. More importantly, Neural LSH does not use the neural
network to create the partitions themselves. We introduce an end-
to-end learning method that uses a novel loss function to create
dataset partitions and learn to classify out-of-sample queries in a
single learning step.

4.1 Overview
We present a high-level overview of our proposed approach in
Figure 1. In general, the ANNS consists of two distinct phases,
(i) the offline phase, where we train the model to partition the
dataset, and (ii) the online phase, to answer queries in real-time
using the trained model.

In the offline phase, we use the dataset points in 𝑋 , the NN
matrix (described in Section 4.2.1), and the loss function (de-
scribed in Section 4.2.2) to train the model in the training loop.
The trained model is then used to partition the dataset and create
a lookup table to speed up the retrieval of candidate sets in the
online phase. In the online phase, the trained model identifies
the most likely bins to which the query 𝑞 belongs. The dataset
points inside these bins are retrieved using the lookup table to
form a candidate set of points containing probable nearby points
of 𝑞. Finally, we search the reduced point sets in the candidate
set to find the ANN of 𝑞.

4.2 The Offline Phase
In the offline phase, we use the 𝑛 points in the dataset 𝑋 to train
a machine learning model, 𝑀 , to create a partition of the data
space into𝑚 bins.

4.2.1 Preprocessing. In this step, we create a 𝑘′-NN matrix 1

from the dataset 𝑋 . The 𝑖𝑡ℎ row of the 𝑘′-NN matrix contains
the 𝑘′ nearest neighbors of 𝑝𝑖 from 𝑋 .

This matrix captures the geometry and distribution of 𝑋 and
provides this information to the model and the loss function.
The 𝑘′-NN matrix is essentially a 𝑘′-NN graph many indexing
methods use, represented as an adjacency list. Figure 2 shows
the representation of the 𝑘′-NN matrix, where 𝑝𝑖 represents the
𝑖𝑡ℎ point in 𝑋 . The 𝑖𝑡ℎ row in the matrix corresponds to all the
𝑘′ NNs of the 𝑝𝑖 . The matrix shown is a 5-NN matrix: Each row
contains the five nearest neighbors of the corresponding point.
Note that this is the only preprocessing in our proposed approach.

Preparing this matrix takes approximately 30 minutes on
the million-sized dataset we used in our experiments. We com-
pute all pairwise distances by traversing the whole dataset only
once in the offline phase. In practical applications, the 𝑘′-NN
matrix is computed in the offline phase beforehand and stored in
disk/cache for fast retrieval.

4.2.2 The Loss Function. In this section, we discuss our
proposed loss function, which is the key to our unsupervised
learning-based solution. The key intuition of the custom loss

1Note that this 𝑘 ′ can be different from the 𝑘 used at query time for finding the
approximate 𝑘 nearest neighbors w.r.t. the query.

Figure 1: Overview of our method.

𝑝0 𝑝7 𝑝10 𝑝3 𝑝21 𝑝11
𝑝1 𝑝0 𝑝20 𝑝19 𝑝7 𝑝5
𝑝2 𝑝4 𝑝9 𝑝20 𝑝17 𝑝8
...

Figure 2: 5-NN matrix created from the dataset before
model training in the offline phase.

function to obtain a quality dataset partition comes from the
following two objectives:

(1) Quality of candidate sets generated: Intuitively, for a given
query point 𝑞, a high-quality candidate set would have
most or all of the nearest neighbors of 𝑞 contained within
the candidate set.

(2) Even distribution of data points among all bins: Ensuring
even distribution of the 𝑛 data points among all the𝑚 bins
of the partition (roughly 𝑛/𝑚 points per bin) results in
smaller candidate set sizes generated per query on average.
We desire fewer points per candidate set (𝐶) since the
candidate set size |𝐶 | is proportional to computation cost:
We need to iterate through the points in 𝐶 to return the
nearest neighbors of 𝑞.

The loss computes how far away a given partition is from our
desired objectives. The loss has two factors: (i) the quality cost,
which measures how bad on average a candidate set is for a query,
and (ii) the computational cost, which measures how far away the
partition is from being a balanced one.

We define the terms used in the loss formulation in Table 1:

2Note that our model returns the probability distribution of a point being in different
bins of the given partition. In order to formulate the loss during model training, we
only consider the most likely bin the model assigns to an input point.

Notation Meaning
𝑋 ∈ R𝑑 The 𝑑 dimensional dataset to be partitioned
𝑄 Set of queries {𝑞1, 𝑞2, ..}, not necessarily

present in 𝑋
𝑅 A partition that divides 𝑋 into𝑚 bins

𝑁𝑘 ′ (𝑝) set of true 𝑘′-nearest neighbors of point 𝑝
from 𝑋

𝑅(𝑝) the most likely bin 2 in 𝑅 that might contain
𝑝

𝐶 (𝑝) Candidate set of 𝑝
Table 1: Notations used

In 𝑁𝑘 ′ (𝑝), 𝑝 ∈ R𝑑 can either be a query point not present in
𝑋 , or a data point in 𝑋 . Note that the 𝑘′-NN matrix we defined
earlier helps us to quickly retrieve 𝑁𝑘 ′ (𝑝𝑖) for any point 𝑝𝑖 by
simply indexing into the 𝑖th row of the 𝑘′-NN matrix.

For a given partition 𝑅, 𝐶 (𝑝) is the set of all points in 𝑋 that
are present the bin 𝑅(𝑝). Therefore, for a point 𝑝 , 𝐶 (𝑝) denotes
its candidate set.

Finally, 𝑄 denotes the set of all query points, where points in
𝑄 are not necessarily present in 𝑋 .

We can now define the quality cost and the computation cost
of 𝑅 as follows:

• The quality cost of 𝑅,𝑈 (𝑅), can be defined as:

𝑈 (𝑅) =
∑︁
𝑞∈𝑄

∑︁
𝑝∈𝑁𝑘′ (𝑞)

1𝑅 (𝑝)≠𝑅 (𝑞) (2)

– Where1 is the indicator function. The factor1𝑅 (𝑝)≠𝑅 (𝑞)
can otherwise be expressed as:

1𝑅 (𝑝)≠𝑅 (𝑞) =

{
1, if 𝑅(𝑝) ≠ 𝑅(𝑞)
0, otherwise

(3)

where 𝑅(𝑝) ≠ 𝑅(𝑞) if the bin in 𝑅 that contains 𝑝 is not
the same as the bin that contains 𝑞.

• The average computation cost of 𝑅, 𝑆 (𝑅), can be deter-
mined by taking the mean of the candidate set sizes of all
the query points:

𝑆 (𝑅) = mean
𝑞∈𝑄

|𝐶 (𝑞) | (4)

To create a partition that serves as an efficient index for search-
ing the 𝑘 nearest neighbors, we need to find 𝑅 that minimizes
both𝑈 (𝑅) and 𝐶 (𝑅). Mathematically,

𝑅optimal = min
𝑅

{𝑈 (𝑅) + 𝜂.𝑆 (𝑅)} (5)

where 𝜂 is a balance parameter that trades off between the
two factors of the cost.

We can implement our loss function using any standard mod-
ern machine learning library that supports tensor operations
with automatic differentiation, which will allow the framework
to compute the gradients of our loss function with respect to the
parameters of any machine learning model without explicitly
formulating them.

Computing quality cost: For simplicity, let us assume that
any data point 𝑝𝑖 can be a query. Now, we show how to compute
𝑈 (𝑅) for a single data point, 𝑝𝑖 ∈ R𝑑 , in 𝑋 .

First, we input 𝑝𝑖 into the model𝑀 , to get 𝑏𝑖 as follows.

𝑀 (𝑝𝑖) = 𝑏𝑖 =
(
𝑏1
𝑖

𝑏2
𝑖

... 𝑏𝑚
𝑖

)
(6)

Here𝑀 (𝑝𝑖) is the model’s output for the point 𝑝𝑖 , and 𝑏
𝑗
𝑖
is the

probability of point 𝑖 being assigned to bin 𝑗 .
We now determine to which bin 𝑝𝑖 should be assigned if the

partition is optimal. To do this, we use the𝑘′-NNmatrix to quickly
retrieve 𝑁𝑘 ′ (𝑝𝑖), the set of true 𝑘′-nearest neighbors of 𝑝𝑖 from
𝑋 , as:

𝑁𝑘 ′ (𝑝𝑖) =
(
𝑝1 𝑝2 ... 𝑝𝑘 ′

)
(7)

Here 𝑝 𝑗 is the 𝑗th nearest neighbor of 𝑝𝑖 in 𝑋 .
We pass all the points in 𝑁𝑘 ′ (𝑝𝑖) through the model to get the

model’s outputs for the 𝑘′-nearest neighbors of 𝑝𝑖 .

𝑀{𝑁𝑘 ′ (𝑝𝑖)} =
𝑏1
...

𝑏𝑘 ′

©«
𝑏11 𝑏21 ... 𝑏𝑚1
...

𝑏1
𝑘 ′ 𝑏2

𝑘 ′ ... 𝑏𝑚
𝑘 ′

ª®®¬ (8)

Here, 𝑏 𝑗 is the model’s output for the 𝑝 𝑗 .
Next, we determine the distribution of the points in 𝑁𝑘 ′ (𝑝𝑖)

among the available bins. To do this, we take the proportion of
points assigned to each bin from𝑀{𝑁𝑘 ′ (𝑝𝑖)} to get the following.

𝐵𝑘 ′ (𝑝𝑖) =
(
�̂�1 �̂�2 ... �̂�𝑚

)
(9)

where, 𝐵𝑘 ′ (𝑝𝑖) lists the proportion of points among the 𝑘′-
NNs of 𝑝𝑖 that belong to each bin.

Ideally, we want the model output for 𝑝𝑖 to indicate the dis-
tribution of its nearest neighbors over all the bins. Therefore,
we take 𝐵𝑘 ′ (𝑝𝑖) as the ground truth labels for the point 𝑝𝑖 and
compute 𝑝𝑖 ’s quality loss as the cross entropy loss between
𝐵𝑘 ′ (𝑝𝑖) and𝑀 (𝑝𝑖):

𝑈 (𝑅) for 𝑝𝑖 = cross_entropy_loss(𝑏𝑖 , 𝐵𝑘 ′ (𝑝𝑖)) (10)

Finally, to compute𝑈 (𝑅) for the entire dataset 𝑋 , we calculate
𝑈 (𝑅) using Equation 10 for every point in 𝑋 and then take the
average.

Computational cost: For determining the computation cost
factor of the loss function, 𝑆 (𝑅), we need the model’s output on

all the points in the dataset 𝑋 . We pass the entire 𝑋 through the
model,𝑀 , to get the following output as𝑀 (𝑋).

©«
𝑏11 𝑏21 ... 𝑏𝑚1
...

𝑏1𝑛 𝑏2𝑛 ... 𝑏𝑚𝑛

ª®¬ (11)

Here, 𝑏 𝑗
𝑖
is the probability that the model assigned point 𝑖 to

bin 𝑗 .
Our target is to make the model evenly distribute the 𝑛 points

in 𝑋 among all the𝑚 available bins. Therefore, we ideally want
each bin to contain 𝑛/𝑚 points. In the model outputs,𝑀 (𝑋), in
Equation 11, each 𝑖th row denotes the model outputs for the
𝑖th point in 𝑋 , and the 𝑗th column denotes the probabilities of
assigning each of the 𝑖 points to the 𝑗th bin.

To ensure an even distribution of points between the available
bins, we want all the 𝑛 points in the dataset to be assigned to the
𝑚 available bins evenly, such that each bin has approximately
𝑛/𝑚 points assigned to it. For each query point, 𝑞, our model
outputs a probability distribution over the available bins for as-
signing 𝑞. We assign 𝑞 to the bin with the highest probability
from this distribution. Therefore, for a balanced partition, we
want each column to only have 𝑛/𝑚 high values, since the 𝑖th
high probability value in the 𝑗th column corresponds to point 𝑖
being assigned to the 𝑗th bin. To that end, we filter the highest
𝑛/𝑚 probability values by selecting the highest 𝑛/𝑚 values in
each column of the output matrix to get a window, 𝑤 , of high
probability values:

𝑤 = max 𝑛/𝑚 values across each column of𝑀 (𝑋)

=
©«
𝑏11 𝑏21 ... 𝑏𝑚1
...

𝑏1
𝑛/𝑚 𝑏2

𝑛/𝑚 ... 𝑏𝑚
𝑛/𝑚

ª®®¬
(12)

To calculate 𝑆 (𝑅), we sum all the entries in the window, 𝑤 ,
from Equation 12 and negate it:

𝑆 (𝑅) = −
∑︁

w (13)

Minimizing 𝑆 (𝑅) leads to higher values in the 𝑛/𝑚 window,
creating a more balanced partition.

Caveats: In the operations detailed above, we calculate the
loss using only the data points in 𝑋 , even though our loss for-
mulation in Equations 2 and 4 requires a set of query points.
In our formulation, we assume that the query points follow the
same distribution as the data points in 𝑋 . Therefore, we can use
only the points in 𝑋 to compute the loss.

Another caveat of our loss is that we can only calculate it over
a batch of input points and not for individual data points like
in other loss functions typically used in machine learning (We
calculate 𝑆 (𝑅) over the entire batch of points). We need a batch of
points to compute 𝑆 (𝑅) because the model cannot learn anything
about the underlying distribution of 𝑋 from a single data point.
As a result, we need special care when using mini-batches for
model training.

Batching: So far, we assume that the output matrix of the
whole dataset is available to us for calculating the loss value. In
practice, the output matrix of the entire dataset may not fit in
GPU or CPU memory during model training. In this case, we
can approximate the data distribution by randomly sampling a
smaller batch of points from the dataset for each iteration of the
training loop. As long as our sampling technique is uniform (i.e.,
we choose every point in𝑋 for a particular mini-batch with equal
probability), the sampled mini-batch will have roughly the same

Algorithm 1 Offline Phase - Train model to create space parti-
tioning index

Input: Dataset 𝑋 ∈ R𝑑 , nearest neighbors to use 𝑘′ > 0 ,
number of bins𝑚, Distance function 𝐷

(1) Create a 𝑘′-NN matrix by computing pairwise distances
using 𝐷 between all points in 𝑋 , then storing indices of
true 𝑘′ nearest neighbors of each point.

(2) Train a machine learning model𝑀 with the loss function
defined in 4.2.2. This model jointly learns a partition of 𝑋
and learns to classify new points to assign queries into
bins.

(3) Run inference on all points in 𝑋 to form a partition 𝑅 of
𝑋 . Store the point indices to keep track of the points in 𝑋
assigned to each bin in a lookup table.

distribution of points as 𝑋 . Our experiments show that sampling
even just ≈ 4% of the dataset per mini-batch leads to relatively
high-quality learned partitions.

4.2.3 Training the Model. Algorithm 1 outlines the whole
learning process. We detail the algorithm steps below.

In Step 1 we create the 𝑘′-NN matrix using a given distance
measure 𝐷 . Then, in Step 2, we use the points in 𝑋 , the 𝑘′-NN
matrix, and the loss function defined above to train a model to
create a partition of the dataset 𝑋 with 𝑛 points ∈ R𝑑 , dividing it
into a predetermined number (say𝑚) of bins. We use the machine
learning model in this setting to output a probability distribution
over the bins assigned to 𝑞.

Wewant ourmodel to generalize well to query points (𝑞 ∈ R𝑑)
outside of 𝑋 (i.e., queryWedel has never seen during training).
Therefore, we have to cluster the dataset 𝑋 into𝑚 bins and also
partition the entireR𝑑 for the range occupied by the dataset. Neu-
ral networks are suitable for this task. They can learn complex
decision boundaries optimized for a specific dataset and use reg-
ularization techniques to prevent overfitting on the training data.
We learn the partition by minimizing the loss function defined
in Section 4.2.2.

After the model training is complete, in Step 3, we pass the
entire dataset of points (𝑋) through the model to obtain the
learned partition of the dataset 𝑋 . In the online phase, we need
to quickly retrieve all the points in 𝑋 belonging to a particular
bin. To speed up this retrieval, we store the indices of the points
in 𝑋 assigned to each bin in a lookup table.

4.3 The Online Phase
Once the system trains the model and creates the lookup table
outlined in the previous section, it is ready to answer queries in
the online phase. Algorithm 2 outlines the online phase.

In Step 1, we pass the given query point 𝑞 through the model
to get 𝑀 (𝑞), a probability distribution over assigned bins of 𝑞.
In step 2,𝑀 (𝑞) is used to determine the set of bins 𝑏𝑞 the query
point might belong to. Then, using the lookup table created in
the offline phase, we retrieve all the points in 𝑋 that also belong
to the bins in 𝑏𝑞 to form the candidate set of points,𝐶 (𝑞). Finally,
in Step 3, we search through the points in 𝐶 (𝑞) to return the
𝑘-Nearest Neighbors of 𝑞. Hence, we reduce the search space
from the entire dataset to just 𝐶 .

Instead of searching in just one bin, we use the probability dis-
tribution output by the model to search in the𝑚′ most probable
bins. This way, we trade-off higher nearest neighbors accuracy

(since we are more likely to find neighbors close to 𝑞 simply
by searching through more nearby points) at the cost of higher
search time (since we need to search through a larger candidate
set).

Algorithm 2 Online Phase: Return the k-nearest neighbors for
a query point

Input: Query Point 𝑞 ∈ R𝑑 , number of bins to search𝑚′,
number of nearest neighbors to return 𝑘 , Distance function 𝐷 ,

Trained model𝑀 .
(1) Run inference on point 𝑞 by computing𝑀 (𝑞)
(2) From𝑀 (𝑞), for the most probable𝑚′ assigned bins 𝑏𝑞 =

{𝑏1, 𝑏2, ..., 𝑏𝑚′ }, retrieve all points from𝑋 that are assigned
to any of 𝑏𝑞 , using the lookup table from Step 3 in Algo-
rithm 1, to form the Candidate Set (𝐶)

(3) For all points in 𝐶 , compute 𝐷 (𝑞, 𝑝𝑖), and return the 𝑘
most similar points to the query.

4.4 Optimizations
In this section, we propose two additional components: (i) A
boosting method that uses an ensemble of models to create mul-
tiple partitions, and ii) a hierarchical partitioning strategy that
recursively divides the dataset to get finer dataspace partitions.

4.4.1 Ensembling. In applications where high 𝑘-NN accuracy
is crucial, we can boost the accuracy by training multiple models
sequentially, with each model generating a different partition
for the same dataset. We call this approach ensembling, where
we create an ensemble of models. Ensembling allows us to create
a set of complementary partitions for a single dataset. The intu-
ition behind ensembling is that different models can specialize
in different regions of the data space. Working together, these
models can increase the quality of candidate sets generated for
any query point. Figure 3 illustrates this intuition.

Algorithm 3 Ensembling

Input: Dataset 𝑋 ∈ R𝑑 containing 𝑛 points, Initial input weights
𝑊1 = {𝑤1

1 ,𝑤
1
2 , ...,𝑤

1
𝑛}, Number of models in ensemble 𝑒

(1) for 𝑗 ∈ 1, 2, ...𝑒 do:
(a) Train model𝑚 𝑗 to learn partition 𝑟 𝑗 , using weights𝑊𝑗 ,

by modifying the quality cost of the loss function:

𝑈 (𝑟 𝑗) =
𝑛∑︁
𝑖=1

𝑞𝑖 .𝑤
𝑗
𝑖

∑︁
𝑝∈𝑁𝑘′ (𝑞𝑖)

1𝑟 𝑗 (𝑝)≠𝑟 𝑗 (𝑞𝑖) (14)

(b) Obtain new weights for use in the next model:

𝑤
𝑗+1
𝑖

=
∑︁

𝑝∈𝑁𝑘′ (𝑞𝑖)
1𝑅 (𝑝)≠𝑅 (𝑞𝑖)

𝑤
𝑗+1
𝑖

= 𝑤
𝑗+1
𝑖

.𝑤
𝑗
𝑖

Our ensembling algorithm is based on AdaBoost [41]. How-
ever, unlike AdaBoost, instead of training many weak learners,
we use this boosting formulation to create many complementary
partitions, to improve the quality of the generated candidate set.
Boosted Search Forest [28] used this concept in a similar fashion.

To create an ensemble of models, we first assign weights to
each point in 𝑋 . We update the quality cost factor of the loss
function as in Equation 14 in Algorithm 3 to incorporate these

Figure 3: Ensembling with two models. Here, Model 2 (M2) performs better with the yellow query point, resulting in the
second model outputting a higher confidence value.

Algorithm 4 Querying with ensembling
Input: Query point 𝑞, Ensemble of trained models

(𝑀1, 𝑀2, ..., 𝑀𝑒)
(1) Run inference on the query point 𝑞 on all the models

(𝑀1, 𝑀2, ..., 𝑀𝑒) in the ensemble to get corresponding bin
assignments of each model.

(2) Each model,𝑀𝑖 , returns a candidate set, 𝑐𝑖 ,

𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑒 }
(3) Take each model’s highest probability as its confidence

value, 𝜎𝑖 :
𝑆 = {𝜎1, 𝜎2, ..., 𝜎𝑒 }

(4) the best candidate set is the one with the highest confi-
dence score:

𝑐𝑏𝑒𝑠𝑡 = 𝐶 [𝑎𝑟𝑔𝑚𝑎𝑥𝑆]
(5) search through the items as before on only the best candi-

date set to return the nearest neighbors of 𝑞

weights. We train the different models in the ensemble sequen-
tially. We assign equal weights to all the data points for training
the first model. After training the first model, we use the trained
model to obtain new input weights for the second model. We can
then train the second model using the new input weights and so
on. In Algorithm 3,𝑤 𝑗

𝑖
represents the 𝑖𝑡ℎ data point’s weight for

the 𝑗𝑡ℎ model in the ensemble.
Intuitively, eachmodel tries to optimize its partition to perform

better for points with which all the previous models performed
poorly. Each model in the ensemble will tune its partition to
give more importance to "difficult" points (i.e., points with a high
weight value) since they contribute more to the quality factor
of the loss. We ensure that the weights of the following models
in the ensemble only try to optimize for the points in which
previous models could not do well by multiplying the weights of
all points with the weights of the previous models. Multiplying
the weights like this ensures that only points with high weights
for all previous models will have high weights for the next model.

In the online phase, we pass the query point 𝑞 through all the
models in the ensemble. Since eachmodel𝑀𝑖 returns a probability
distribution over assigned bins, we can return the highest proba-
bility as the confidence value of𝑀𝑖 . Then, we select the candidate
set corresponding to the model with the highest confidence value

Figure 4: Dividing a dataset hierarchically with three
models (one root model and two leaf models), finally

resulting in a partition with four bins

as the output candidate set of the ensemble. Algorithm 4 outlines
the querying process.

4.4.2 Hierarchical Partitioning. When the number of required
bins𝑚 is large, training can become difficult as we attempt to
partition a large dataset into many bins in a single pass. In order
to make training more efficient, we can recursively partition the
dataset into 𝑚1 bins at the first level, then subdivide each of
those bins into𝑚2 bins at the second level, and so on, resulting
in a total of𝑚1 ·𝑚2 · ·𝑚𝑙 bins for 𝑙 level-partitioning. This is
illustrated in Figure 4.

For a query point 𝑞, we pass 𝑞 from the top of the tree down to
the leaves. We multiply the assigned probabilities of each model
down the tree to obtain the final probability of assigning 𝑞 to each
of the bins in the leaves. Hierarchical partitioning allows us to
simplify the learning process for each model. Further, each model
can have fewer parameters and be simpler since each model’s
learning task is more straightforward. As a result, we can often
train a tree of models that takes up lesser total memory than a
single large and complex model needed to partition the same
dataset in a single pass.

4.5 Time Complexity Analysis
The online phase of our algorithm is sublinear as we do not have
to traverse the entire dataset to find a query’s k-NNs. For a given
query point 𝑞, our algorithm follows two steps to find 𝑞’s k-NNs.
First, we feed 𝑞 to our model to find the associated bins of 𝑞 and

thus its candidate set. Second, we traverse the candidate set to
find 𝑞’s nearest neighbors (by brute-force search). The first task
is of order 𝑑 , the dimensionality of 𝑞, since the input layer of the
trained model takes 𝑑 values for multiplication. The second task
is of order 𝑐𝑑 , where 𝑐 is the largest candidate set size, since we
need to traverse the entire candidate set to find 𝑞’s k-NNs. Thus,
finding k-NNs of a single query point 𝑞 using our approach is an
operation of order 𝑂 (𝑐𝑑 + 𝑑).

5 EXPERIMENTS
We present detailed experimental evaluations of our proposed
approach and compare the results with the state-of-the-art base-
lines using several real datasets. We first discuss the experimental
settings that include datasets, baselines, performance metrics,
and parameters of the experiments. We then discuss the imple-
mentation details of the algorithm and present our experimental
evaluation. Finally, we compare our space-partitioning perfor-
mance with that of common clustering methods.

5.1 Experimental Settings
Here, we discuss the datasets, state-of-the-art baseline approaches,
and different parameters of our experiments.

5.1.1 Datasets. For our experimental benchmarks, we used
two standard ANN benchmark datasets [5]:

• SIFT: 1M data points, each having 128 dimensions
• MNIST: 60k data points, each having 784 dimensions

Both datasets come with 10k query points that are not present
in the training dataset. We choose these datasets as they encom-
pass both aspects of large-scale datasets: a high number of points
(SIFT has 1M points), and high dimensionality (MNIST has 784
dimensions), with data taken from real-world applications.

5.1.2 Baselines. We compare our approach with several space
partitioning baselines, outlined in Section 5.2. Notably, we com-
pare with the state-of-the-art Neural LSH [11] and K-means
clustering. Neural LSH [11] is currently the best-performing
deep learning based space-partitioning approach. On the other
hand, K-means clustering is a well-known technique used in
many production systems for partitioning the dataset before
ANN search or other processing. For both baselines, we use the
same codebase and settings found in the Neural LSH [11] pa-
per: https://github.com/twistedcubic/learn-to-hash. To demon-
strate how our partitioning strategy can enhance the performance
of the state-of-the-art non-learning ANNS techniques, we incor-
porate our method with ScaNN and compare the performance
with vanilla ScaNN [16], HNSW [31], and FAISS [21].

5.1.3 Performance metrics. To evaluate the effectiveness of
the baseline approaches, we compare and evaluate the trade-offs
between two key metrics:

(1) The 𝑘-NN accuracy: The fraction of the true 𝑘-Nearest
Neighbors (𝑘-NN) that are present among the 𝑘 returned
points by the algorithm.

(2) The size of the candidate set: The number of points in the
candidate set 𝐶 represents the query processing time, as
we need to search through all the points in𝐶 to return the
𝑘-NN.

In general, more candidates present in the candidate set for any
partitioning (or clustering) algorithm lead to a larger 𝑘-NN accu-
racy.

5.1.4 Parameters. Our algorithm exposes a lot of tuneable pa-
rameters for the user to optimize the framework to their specific
application needs. Changing each of these parameters affects a
different part of the model. These parameters include:

(1) Integer 𝑘′: This value specifies the number of nearest
neighbors to consider when building the 𝑘′-NN matrix in
the offline phase. Setting a larger 𝑘′ provides more infor-
mation to the model and loss during training at the cost of
requiring more memory during training. However, setting
𝑘′ too high would result in far-away points becoming near-
est neighbors for many data points. We found that setting
𝑘′ to 10 creates sufficiently good dataset partitions while
using less memory during training. Also, setting larger
values of 𝑘′ does not appreciably increase the quality of
the created partitions.

(2) Integer𝑚, number of bins to split the dataset into:𝑚 affects
how finely the model splits the dataset during training
and, in turn, how "difficult" the problem is for the neural
network. Setting 𝑚 to 16 for a 1M sized dataset, for in-
stance, means that the dataset will be almost evenly split
among 16 bins, resulting in about 1𝑀/16 = 62500 points
per bin. On the other hand, setting𝑚 to 256 for a 1M sized
dataset partitions the dataset into 256 bins, with each bin
having 1𝑀/256 ≈ 3900 points.

(3) Integer 𝑒 , number of models in the ensemble: 𝑒 denotes
the number of models to train for a single dataset. Each of
the 𝑒 models describes a different partition of the dataset.
Since each model optimizes for the poorly placed points
in all previous partitions, having more models increases 𝑘-
NN accuracy for the same candidate set size. Also, having
a larger 𝑒 means that each model can be simpler and can af-
ford to learn simpler (might not be high-quality) partitions
(using a neural network with fewer parameters). Learn-
ing simpler models does not sacrifice partitioning quality
since the greater number of models in the ensemble can
boost the quality of the returned candidate set of the indi-
vidually weak models. However, a larger 𝑒 comes at the
cost of longer training times (since each of the 𝑒 models
trains sequentially) and higher memory usage (since each
of the models must be stored, along with their individual
lookup tables).

(4) Model Complexity: In our proposed framework, we can
use any machine learning model architecture as 𝑀 , the
model used to learn the partitions. For instance, increas-
ing the number/size of the hidden layers or using a more
complex architecture (such as replacing a linear model
with a neural network) results in better-learned partitions.
However, more complex models require longer training
times and more memory to store the larger models. We
demonstrate this by training two different model architec-
tures, a neural network and a logistic regressionmodel,
and presenting their results in Sections 5.4.1 and 5.4.2.

(5) 𝜂: The balance parameter in the loss (Equation 5). This
value quantifies the trade-off between the two factors of
the loss function. Increasing 𝜂 makes the partition more
balanced, but a value of 𝜂 too high makes it more difficult
for the model to optimize the quality cost factor of the
loss function. We tuned 𝜂 and set it to the lowest value, re-
sulting in a balanced partition. We mentioned the specific
values of 𝜂 used in Table 3.

https://github.com/twistedcubic/learn-to-hash

5.2 Implementation Details
We demonstrate our partitioning performance with two different
model architectures:

• Neural Networks: Here, we used a small neural network
with one input layer and one hidden layer containing
128 parameters. Each network layer consists of a fully
connected layer, and batch normalization [20], followed
by ReLU activations. The final layer is an output layer
containing𝑚 output nodes followed by a softmax layer,
where𝑚 is the number of bins in the partition. To reduce
overfitting and to generalize well to unseen queries, we
use dropout [44] with a probability of 0.1 during training.
We train each neural network for about 100 epochs. We
compare this model’s performancewith baselines K-means
clustering and Neural LSH [11]. We also include results
for the data oblivious Cross-polytope LSH [3] to show
improvements in the performance of learning methods
over non-learning methods.

• Logistic Regression: Here, we used a simple logistic re-
gression model to divide the dataset into two bins at each
level recursively to form a partitioning tree. Each model in
the tree has two output nodes in the final layer, followed
by a softmax layer to output a probability distribution
over two bins. We trained each logistic regression model
for less than 50 epochs. We compare this model’s perfor-
mance with other tree-based partitioning methods that
recursively split the dataset using hyperplanes: Regression
LSH [11] (A variant of Neural LSH that uses logistic re-
gression instead of neural networks), 2-means tree, PCA
trees [1, 27, 43], Random Projection trees [9] , Learned
KD-tree [7], and Boosted search forest [28].

The model weights were initialized for both architectures with
Glorot initialization [14]. We trained both types of models using
the Adam optimizer [25]. To show the performance improve-
ments of ensembling, we used an ensemble of methods to boost
the retrieval performance of the neural network architecture in
our experiments.

In our experiments, we use the same number of bins for all the
methods to evaluate our approach’s representative performance.
We use PyTorch [36] to implement our algorithms.

5.3 Training Efficiency
We trained our models on a hosted runtime with a single-core
hyperthreaded Xeon processor, 12GB RAM, and a Tesla K80 GPU
with 12GB GDDR5 VRAM. Training multiple models in an en-
semble with million-sized datasets takes less than an hour, signifi-
cantly lower than the several hours of preprocessing time needed
for Neural LSH. We highlight the different training times for
different specifications in Table 3. The training times mentioned
in Table 3 are the total times needed to train three base models
in the ensemble while keeping GPU usage under 6GB.

We also need significantly fewer parameters on even the
largest model sizes to beat Neural LSH’s partitioning performance
when dividing the dataset into 256 bins. We highlight this in
Table 2.

Neural LSH Ours K-Means
No. of bins 256

Total parameters 729k 183k 33k
Hidden layer size 512 128 -

Table 2: Approximate number of learnable parameters of
selected space-partitioning methods when dividing SIFT

into 256 bins.

Dataset No. of bins Training time (minutes) Value of 𝜂
MNIST 16 2min 7
MNIST 256 12min 30
SIFT 16 6min 7
SIFT 256 40min 10

Table 3: Comparing our method’s approximate offline
training times and 𝜂 values with different configurations.

5.4 Performance Evaluation
We evaluate the performance of our method by comparing it with
space-partitioning methods using a neural network model and
tree-based methods using a logistic regression model.

We generate each of the graphs shown by successively search-
ing in more of the most probable bins returned by the algorithms.
We systematically note the k-NN accuracies with increasing can-
didate set size, |𝐶 |.

5.4.1 Comparing with space-partitioning methods. Here, we
present the performance evaluation of our proposed approach,
using a neural network as the learning model. Figure 5 shows
the comparison between our method and the selected baselines:
Neural LSH, K-means, and Cross polytope LSH. We test with 16
and 256 bins for all the baselines for the experiments to show the
trade-off between candidate set sizes and 10-NN accuracies. We
use hierarchical partitioning when dividing the dataset into 256
bins, first splitting into 16 bins and then sub-splitting each bin
into 16 more bins. Splitting the dataset into a greater number of
bins allows us to control the candidate set size, |𝐶 |, more finely
because searching each additional bin of points increases |𝐶 |
by a smaller amount. This leads to more points in the graph in
Figures 5c and 5d.

We see that our model performs better than Neural LSH even
using just one base model in the ensemble when partitioning
the dataset into 256 bins (in figures 5c and 5d). Partitioning the
dataset into a larger number of bins is an expected configuration.
It leads to greater k-NN accuracy in the online phase with smaller
candidate set sizes at the expense of longer training times and
larger models.

As for partitioning into 16 bins, we see almost similar parti-
tioning performance compared to Neural LSH with both datasets
in Figure 5 when we do not use any ensembling and train just one
model. The similarity in k-NN retrieval performance suggests
that our model learns similar partitions to Neural LSH without
using any graph partitioning algorithm in an unsupervised set-
ting and uses significantly less time. When using more than one
model in an ensemble, we see up to about 10% improvement in
k-NN accuracy using three models (Figure 5).

Table 4 shows the relative decrease in our method’s average
candidate set sizes compared to Neural LSH and K-means when

(a) SIFT, 16 bins (b) MNIST, 16 bins

(c) SIFT, 256 bins (d) MNIST, 256 bins

Figure 5: Comparing our method with space-partitioning baselines. X-axis: number of candidates retrieved in the candidate
set. Y axis: 10-NN accuracy (Up and to the left is better). Our method uses an ensemble of 3 models to boost performance.

dividing the SIFT dataset into 16 bins and maintaining a 10-NN
accuracy of 85%. The smaller candidate set sizes speed up ANNS
proportionately as we have to search through a smaller number
of points to attain the same 10-NN accuracy.

The experiments show that while Neural LSH can create high-
quality partitions of the dataset, our approach returns better can-
didate sets (i.e., Our candidate sets contain more of the k-Nearest
Neighbors for any given query point.) for query points since
we use multiple complementary partitions per dataset through
ensembling.

5.4.2 Comparing with tree-based methods. We compare the
performance of our approach with baselines that use hyperplanes
to partition the dataset (Figure 6). In this setting, we use binary de-
cision trees up to depth 10, which correspond to the dataset being
divided recursively into 210 = 1024 bins for each of the methods
compared. We note that our method, using a logistic regression
learner, significantly outperforms Regression LSH without any
ensembling. This is especially true in the high accuracy regime,
where in SIFT, for instance, to obtain a 10-NN accuracy of about
98%, our approach returns candidate set sizes that are about 60%
smaller than the best performing baselines.

5.4.3 Comparing with non-learning ANNS methods. In this
set of experiments, we demonstrate the ubiquitous effectiveness
of our partitioning approach in improving the performance of

Method Decrease in candidate set size for 10-NN search
Neural LSH 33%
K-means 38%
Table 4: Relative decrease in candidate size when

searching for 10-Nearest Neighbors in SIFT, maintaining
10-NN accuracy of 85% in Figure 5a

non-learning ANNS approaches. We incorporated our partition-
ing approach in the best-performing ANNS method ScaNN. We
first partition the data using our approach, where we split the
dataset into a predetermined number of bins. Then, for a given
query point 𝑞, we use our trained model to return a candidate
set of points that are likely to be near 𝑞. Finally, we use ScaNN
to search for the k-NNs of 𝑞 from its candidate set. In particular,
we use ScaNN’s novel anisotropic quantization method to speed
up this search. We term this pipeline as USP + ScaNN algorithm,
where USP refers to our proposed Unsupervised Space Partition-
ing approach. We show the effectiveness of this approach by
comparing USP + ScaNN with vanilla ScaNN (i.e., ScaNN without
any data partitioning algorithm run beforehand), ScaNN with
K-means tree partitioning (termed as K-means + ScaNN, where K-
means trees partition the dataset before running ScaNN), HNSW,
and FAISS. Figure 7 outlines the results of our experiments. On
average, the experiments show a 40% speedup in 10-NN retrieval

(a) SIFT, 1024 bins (b) MNIST, 1024 bins

Figure 6: Comparing our method with binary decision trees that use hyperplane partitions. X-axis: number of candidates
retrieved in the candidate set. Y axis: 10-NN accuracy (Up and to the left is better).

(a) SIFT (b) MNIST

Figure 7: Using our partitioning method to enhance ScaNN’s performance (Up and to the left is better). ScaNN + Ours
outperforms commonly used previous best ANNS baselines.

times compared to the best-performing approach, K-means +
ScaNN.

5.5 Comparison with clustering methods
The previous experiments show that our partitioning algorithm
generates superior partitions compared to state-of-the-art parti-
tioning baselines. Clustering algorithms (such as K-means clus-
tering) split datasets into clusters and thus create partitions. We
can similarly use our algorithm to create clusters of the dataset in
an unsupervised manner. We show that the clusters created from
our algorithm are better than the most commonly used clustering
algorithms.

We show the visualization of several 2D standard datasets
(moon and circles) from scikit learn [37], which are often used to
determine the pitfalls of clustering algorithms. We also test with
another sample dataset generated using make_classification from
scikit learn with four clusters, which is challenging for many
clustering algorithms. We compare our approach with common
clustering algorithms DBSCAN [12], Spectral clustering [35], and
K-means clustering in Table 5, where we show that our clustering
performance is optimal for the test datasets. The results show that

our approach successfully outputs the most natural clustering
regardless of the shape of the data distribution.

We note that even though spectral clustering achieves a simi-
lar quality clustering as ours, we cannot scale spectral clustering
efficiently to large and high-dimensional datasets. Thus, our pro-
posed partitioning approach can be a strong alternative to com-
monly used clustering techniques for high-dimensional datasets.

6 CONCLUSIONS
This paper proposes an end-to-end unsupervised learning frame-
work that couples partitioning and learning to solve the ANNS
problem in a single step. To facilitate the above, we propose
a multi-objective custom loss function that guides the neural
network (or any other learning model) to partition the space
suitable for providing high-quality answers for ANNS. To fur-
ther improve the performance, we propose an ensembling tech-
nique by adding varying input weights to the loss function to

Our Approach DBSCAN K-means Spectral clustering

Table 5: Comparing common clustering algorithms to our space-partitioning approach.

train multiple models and enhance search quality. Our exper-
imental evaluation shows that our method beats the state-of-
the-art learning-based ANNS approach while using fewer pa-
rameters and shorter offline training times on several bench-
mark datasets. We also show that our unsupervised partition-
ing approach boosts the current best-performing ANNS method,
ScaNN, by 40%. The code base of this paper is available at https:
//github.com/abrar-fahim/Neural-Partitioner.

Acknowledgments: This work is done at DataLab (data-
lab.buet.io), Dept of CSE, BUET. Muhammad Aamir Cheema is
supported by ARC FT180100140.

REFERENCES
[1] Amirali Abdullah, Alexandr Andoni, Ravindran Kannan, and Robert

Krauthgamer. 2014. Spectral Approaches to Nearest Neighbor Search.
arXiv:1408.0751 [cs] (Aug. 2014). http://arxiv.org/abs/1408.0751 arXiv:
1408.0751.

[2] Abdullah Al-Mamun, HaoWu, andWalid G. Aref. 2020. A Tutorial on Learned
Multi-dimensional Indexes. In Proceedings of the 28th International Conference
on Advances in Geographic Information Systems. ACM, Seattle WA USA, 1–4.
https://doi.org/10.1145/3397536.3426358

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and
Ludwig Schmidt. 2015. Practical and Optimal LSH for Angular Distance.
arXiv:1509.02897 [cs] (Sept. 2015). http://arxiv.org/abs/1509.02897 arXiv:
1509.02897.

[4] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. 2018. Approximate
Nearest Neighbor Search in High Dimensions. http://arxiv.org/abs/1806.09823
Number: arXiv:1806.09823 arXiv:1806.09823 [cs, stat].

[5] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2018. ANN-
Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Al-
gorithms. arXiv:1807.05614 [cs] (July 2018). http://arxiv.org/abs/1807.05614
arXiv: 1807.05614.

[6] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-
tuning indexes for similarity search. In Proceedings of the 14th international
conference on World Wide Web - WWW ’05. ACM Press, Chiba, Japan, 651.
https://doi.org/10.1145/1060745.1060840

[7] Lawrence Cayton and Sanjoy Dasgupta. 2007. A Learning Framework for
Nearest Neighbor Search. In Proceedings of the 20th International Conference
on Neural Information Processing Systems (NIPS’07). Curran Associates Inc.,
Red Hook, NY, USA, 233–240.

[8] Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low
dimensional manifolds. In Proceedings of the fortieth annual ACM symposium
on Theory of computing. ACM, Victoria British Columbia Canada, 537–546.
https://doi.org/10.1145/1374376.1374452

[9] Sanjoy Dasgupta and Kaushik Sinha. 2013. Randomized partition trees for
exact nearest neighbor search. arXiv:1302.1948 [cs] (Feb. 2013). http://arxiv.
org/abs/1302.1948 arXiv: 1302.1948.

[10] Sanjoy Dasgupta, Charles F. Stevens, and Saket Navlakha. 2017. A neural
algorithm for a fundamental computing problem. Science 358, 6364 (Nov. 2017),

793–796. https://doi.org/10.1126/science.aam9868
[11] Yihe Dong, Piotr Indyk, Ilya P. Razenshteyn, and Tal Wagner. 2020. Learning

Space Partitions for Nearest Neighbor Search. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net. https://openreview.net/forum?id=rkenmREFDr

[12] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. 1996. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
(1996), 6.

[13] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2018. Fast Approxi-
mate Nearest Neighbor Search With The Navigating Spreading-out Graph.
arXiv:1707.00143 [cs] (Dec. 2018). http://arxiv.org/abs/1707.00143 arXiv:
1707.00143.

[14] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of
training deep feedforward neural networks. (2010), 249–256.

[15] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.
Iterative Quantization: A Procrustean Approach to Learning Binary Codes
for Large-Scale Image Retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35, 12 (Dec. 2013), 2916–2929. https://doi.org/10.1109/
TPAMI.2012.193

[16] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix
Chern, and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with
Anisotropic Vector Quantization. https://doi.org/10.48550/arXiv.1908.10396
arXiv:1908.10396 [cs, stat].

[17] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.
Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph.
(Jan. 2011), 7.

[18] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest
Neighbour Graphs. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, Las Vegas, NV, USA, 5713–5722. https://doi.org/10.
1109/CVPR.2016.616

[19] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing - STOC ’98. ACM Press, Dallas,
Texas, United States, 604–613. https://doi.org/10.1145/276698.276876

[20] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167
[cs] (March 2015). http://arxiv.org/abs/1502.03167 arXiv: 1502.03167.

[21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
searchwithGPUs. https://doi.org/10.48550/arXiv.1702.08734 arXiv:1702.08734
[cs].

[22] H Jégou, M Douze, and C Schmid. 2011. Product Quantization for Nearest
Neighbor Search. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33, 1 (Jan. 2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57

[23] Rong Kang, Wentao Wu, Chen Wang, Ce Zhang, and Jianmin Wang.
2021. The Case for ML-Enhanced High-Dimensional Indexes. In
AIDB@VLDB 2021. https://www.microsoft.com/en-us/research/publication/
the-case-for-ml-enhanced-high-dimensional-indexes/

[24] Omid Keivani and Kaushik Sinha. 2018. Improved nearest neighbor search
using auxiliary information and priority functions. (2018), 2573–2581.

[25] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs] (Jan. 2017). http://arxiv.org/abs/1412.6980
arXiv: 1412.6980.

https://github.com/abrar-fahim/Neural-Partitioner
https://github.com/abrar-fahim/Neural-Partitioner
http://arxiv.org/abs/1408.0751
https://doi.org/10.1145/3397536.3426358
http://arxiv.org/abs/1509.02897
http://arxiv.org/abs/1806.09823
http://arxiv.org/abs/1807.05614
https://doi.org/10.1145/1060745.1060840
https://doi.org/10.1145/1374376.1374452
http://arxiv.org/abs/1302.1948
http://arxiv.org/abs/1302.1948
https://doi.org/10.1126/science.aam9868
https://openreview.net/forum?id=rkenmREFDr
http://arxiv.org/abs/1707.00143
https://doi.org/10.1109/TPAMI.2012.193
https://doi.org/10.1109/TPAMI.2012.193
https://doi.org/10.48550/arXiv.1908.10396
https://doi.org/10.1109/CVPR.2016.616
https://doi.org/10.1109/CVPR.2016.616
https://doi.org/10.1145/276698.276876
http://arxiv.org/abs/1502.03167
https://doi.org/10.48550/arXiv.1702.08734
https://doi.org/10.1109/TPAMI.2010.57
https://www.microsoft.com/en-us/research/publication/the-case-for-ml-enhanced-high-dimensional-indexes/
https://www.microsoft.com/en-us/research/publication/the-case-for-ml-enhanced-high-dimensional-indexes/
http://arxiv.org/abs/1412.6980

[26] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. arXiv:1712.01208 [cs] (April 2018).
http://arxiv.org/abs/1712.01208 arXiv: 1712.01208.

[27] Neeraj Kumar, Li Zhang, and Shree Nayar. 2008. What Is a Good Nearest
Neighbors Algorithm for Finding Similar Patches in Images? In Computer
Vision – ECCV 2008, David Forsyth, Philip Torr, and Andrew Zisserman (Eds.).
Vol. 5303. Springer Berlin Heidelberg, Berlin, Heidelberg, 364–378. https://doi.
org/10.1007/978-3-540-88688-4_27 Series Title: Lecture Notes in Computer
Science.

[28] Zhen Li, Huazhong Ning, Liangliang Cao, Tong Zhang, Yihong Gong, and
Thomas S. Huang. 2011. Learning to Search Efficiently in High Dimensions. In
Proceedings of the 24th International Conference on Neural Information Process-
ing Systems (NIPS’11). Curran Associates Inc., Red Hook, NY, USA, 1710–1718.

[29] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. 2015.
Deep hashing for compact binary codes learning. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, Boston, MA, USA,
2475–2483. https://doi.org/10.1109/CVPR.2015.7298862

[30] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007.
Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search.
In Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB ’07). VLDB Endowment, 950–961.

[31] Yu A. Malkov and D. A. Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using Hierarchical Navigable Small World graphs.
https://doi.org/10.48550/arXiv.1603.09320 arXiv:1603.09320 [cs].

[32] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (April
2020), 824–836. https://doi.org/10.1109/TPAMI.2018.2889473

[33] Marius Muja and David Lowe. 2009. Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration. In Proceedings of the Fourth International
Conference on Computer Vision Theory and Applications. SciTePress - Science
and and Technology Publications, Lisboa, Portugal, 331–340. https://doi.org/
10.5220/0001787803310340

[34] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
Learning Multi-dimensional Indexes. Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (June 2020), 985–1000. https:
//doi.org/10.1145/3318464.3380579 arXiv: 1912.01668.

[35] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering:
Analysis and an Algorithm. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic (NIPS’01). MIT
Press, Cambridge, MA, USA, 849–856.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. (2019), 12.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[38] P. Ram and A. G. Gray. 2013. Which Space Partitioning Tree to Use for Search?.
In Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems - Volume 1 (NIPS’13). Curran Associates Inc., Red Hook, NY,
USA, 656–664.

[39] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou.
2019. Spreading vectors for similarity search. arXiv:1806.03198 [cs, stat] (Aug.
2019). http://arxiv.org/abs/1806.03198 arXiv: 1806.03198.

[40] Peter Sanders and Christian Schulz. 2012. Think Locally, Act Globally: Per-
fectly Balanced Graph Partitioning. http://arxiv.org/abs/1210.0477 Number:
arXiv:1210.0477 arXiv:1210.0477 [cs].

[41] Robert E Schapire. 2013. Explaining adaboost. In Empirical inference. Springer,
37–52.

[42] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. 2005. Nearest-
Neighbor Methods in Learning and Vision: Theory and Practice: Description
of the series - need to check with Bob Prior what it is. Theory and Practice
(2005), 26.

[43] Robert F. Sproull. 1991. Refinements to nearest-neighbor searching ink-
dimensional trees. Algorithmica 6, 1-6 (June 1991), 579–589. https://doi.
org/10.1007/BF01759061

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. (2014), 30.

[45] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2015. Learning to
Hash for Indexing Big Data - A Survey. arXiv:1509.05472 [cs] (Sept. 2015).
http://arxiv.org/abs/1509.05472 arXiv: 1509.05472.

[46] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. 2014. Hashing
for Similarity Search: A Survey. arXiv:1408.2927 [cs] (Aug. 2014). http:
//arxiv.org/abs/1408.2927 arXiv: 1408.2927.

[47] XiangWu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Dan Holtmann-
Rice, David Simcha, and Felix X. Yu. 2017. Multiscale Quantization for Fast
Similarity Search. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook,
NY, USA, 5749–5757.

http://arxiv.org/abs/1712.01208
https://doi.org/10.1007/978-3-540-88688-4_27
https://doi.org/10.1007/978-3-540-88688-4_27
https://doi.org/10.1109/CVPR.2015.7298862
https://doi.org/10.48550/arXiv.1603.09320
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.5220/0001787803310340
https://doi.org/10.5220/0001787803310340
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3318464.3380579
http://arxiv.org/abs/1806.03198
http://arxiv.org/abs/1210.0477
https://doi.org/10.1007/BF01759061
https://doi.org/10.1007/BF01759061
http://arxiv.org/abs/1509.05472
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sketching: Making Distance Computations Faster
	2.2 Indexing: Reducing the Search Space
	2.3 Learning Indexes for Space Partitioning

	3 Problem Definition
	4 Our Method
	4.1 Overview
	4.2 The Offline Phase
	4.3 The Online Phase
	4.4 Optimizations
	4.5 Time Complexity Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Implementation Details
	5.3 Training Efficiency
	5.4 Performance Evaluation
	5.5 Comparison with clustering methods

	6 Conclusions
	References

