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Abstract. In this paper, we propose a novel data-driven approach for a
trip planner, that finds the most popular multi-modal trip using public
transport from historical trips, given a source, a destination, and user-
defined constraints such as time, minimum switches, or preferred modes
of transport. To solve the most popular trip and its variants, we propose
a multi-stage deep learning architecture, PathOracle, that consists of two
major components: KSNet to generate key stops, and MPTNet to gen-
erate popular path trips from a source to a destination passing through
the key stops. We also introduce a unique representation of stops us-
ing Stop2Vec that considers both the neighborhood and trip popularity
between stops to facilitate accurate path planning. We present an exten-
sive experimental study with a large real-world public transport based
commuting Myki dataset of Melbourne city, and demonstrate the effec-
tiveness of our proposed approaches.

Keywords: Public Transport · Path Recommendation · Trip Planning
· Learning Popular Trips

1 Introduction

Almost every modern city offers a must-have trip planner (or a journey plan-
ner) [1] for the smooth and convenient daily commuting of its dwellers. A trip
planner is a web or mobile search engine application to find an optimal means
(e.g., fastest, shortest, or cheapest) of traveling between two locations in the city
using public transport, where a single trip may use a sequence of several modes
of transport. The service has become so ubiquitous that major map services such
as Google Maps integrate such trip planners with their system. These search-
based trip planners rely on the available transport networks and the timetables
of the public transport services of a city and find one or more trip options from a
source to a destination by optimizing different criteria [2], e.g., minimum travel
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time or a minimum number of switches. These existing planners have the follow-
ing limitations: (i) they do not support returning the preferred trip (i.e., popular
one) taken by the past users, which might be of interest for many users, espe-
cially tourists; and (ii) these systems rely on the transport network and fixed
timetables of the transport service and, thus, do not work when timetables are
not available which is the case for a large number of developing mega cities like
Dhaka, Karachi, Delhi etc. To mitigate the above problems, in this paper, we
take an orthogonal and a completely new data-driven approach for a trip planner
that finds the most popular trip from historical trips given a source s, a des-
tination d, and user-defined constraints such as minimum switches or preferred
modes of transport.

Popular paths between a source and a destination may vary at different times
of the day (or days of the week). Moreover, for the case of daily commuting, the
user may want to know the details of the popular path, if the path consists of a
combination of different transport modes such as bus, train, and walk. Also, the
path preferences of individuals may change, e.g., some may prefer bus over tram,
others may prefer a single transport mode rather than taking a combination of
bus, train, tram, etc. Answering popular paths tailored for individuals based on
different contexts is a challenging research problem. In this paper, we propose
a deep learning framework that learns from historical trips to generate popular
paths between a given pair of source and destination and user preferences for a
trip using public transport.

There have been few efforts to solve the popular path problems using trajec-
tory data [6, 9, 12], which largely falls under route planning. A route planning
problem typically deals with finding a route using a single private mode of trans-
portation such as taxis or cars. In contrast, in our trip planner, we are interested
in a path that uses one or more public transport modes to reach the destination.
Chen et al. [6] find the popular route between two locations using HMM. Guo
et al. [9] proposed a learning to route (L2R) approach that learns the routing
behavior of trajectories in a region and transfers this learning to another re-
gion where enough user trajectories are not available for answering paths. In the
most recent work, Li et al. [12] use a deep probabilistic learning based framework,
called DeepST, to find the popular path from historical taxi trips.

Though the above works make important contributions for finding popular
routes by learning from historical taxi trajectories, they have the following major
limitations in addressing our problem of interest. (i) Transport-Mode Oblivious:
They are oblivious to the transport mode of the route, i.e., they assume that
users will use a single mode of transport in their entire path, which is not the case
for most of the journeys on public transport. This limits the applicability of such
systems in many cities, especially in developing cities where no journey planner
is available for public transport network; also, although most of the modern
cities provide a journey planner for commuting from one place to another, there
are a number of ways to reach from one place to another, and there is no way
for the users of these planners to know which path is generally used by most
of the commuters. (ii) Context Oblivious: Existing works assume that popular
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paths will remain fixed for the entire day or may only change in peak and off-
peak hours. For example, a simple additional time context in the popular path
queries requires both approaches [6, 9] to construct separate graphs for each
time range, which is costly. We argue that the model should also learn useful
contexts such as time, preferences, etc., while learning the user trajectories and
also reflect this learning while answering path queries in a particular context.
(iii) Fixed Preference: Existing works do not allow users to set their preferences
while generating the path from source to destination. However, users may have
some personal choices for the preferred trip, e.g., an older person may prefer a
bus over a train as it is more accessible to her, or a disabled person may prefer a
path with a minimum number of switches. Thus, incorporating user preferences
in the popular path construction will facilitate more flexibility for the user.

The key challenges of solving the problem include how to incorporate the
complex multi-modal nature of user trips and other preferences, such as mini-
mum switches or preferred mode of transport, of the users in the learning process.
A straightforward way to build such a system by adapting the methodologies
of existing works (e.g., [6] or [9]) may need to build a separate model for each
transport mode and every conditional constraint such as time range and then
answer popular paths by combining these models. Building such a large number
of models, and more importantly, combining them in answering path queries tai-
lored for individuals is infeasible. While the existing DeepST [12] model can be
adapted to provide popular paths considering multi-modal transport and differ-
ent departure times (which we consider as a baseline in our experimental study),
none of the existing approaches can handle user preferences such as preferred
mode or a minimum number of switches.

In this paper, we propose a multi-stage neural network framework, called
PathOracle, that essentially learns the travel patterns of users while commuting
in a city using public transport. The key intuition of PathOracle is to learn
key intermediate stops to reach from a source to a destination and use these
intermediate stops to generate a mostly preferred trip from historical trips. To
achieve this, we build two networks, Key Stops Net (KSNet) to generate key
stops on the most probable trip for a given source to a destination and Most
Probable Trip Net (MPTNet) to generate trips by progressively connecting key
stops to reach from the source to the destination. One of the most important
features of PathOracle is the flexibility of incorporating constraints such as time,
preferred mode, or trip with the minimum number of switches during query time.
PathOracle achieves this flexibility by decoupling key stop generation with the
popular trip generation. In short, our contributions are as follows:
– We are the first to formulate the problem of answering the most popular path

query from historical trips in the context of multi-modal public transports
based city commuting, which allows users to find the popular path for a
given source-destination, and preferences such as time, a preferred mode of
transport, and minimum switches.

– We propose a deep learning architecture, PathOracle, that consists of two
major components: KSNet to generate key stops and MPTNet to generate
popular path trips from a source to a destination passing through the key
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stops. We also introduce a unique representation of stops using Stop2Vec
that considers both the neighborhood and trip popularity between stops.

– We present an extensive experimental study with a large real-world public
transport based commuting dataset of Melbourne city and test the effective-
ness of our proposed approaches.

2 Definitions and Problem Statement

Stop: A stop x is a location in a map where a person can get on or get off a
vehicle. A stop is represented as a tuple x = (id, lat, lon), where id is the stop-id,
lat is the latitude and lon is the longitude of the stop. S is the set of all stops.
Mode: A mode m represents the type of a transport mode. M is the set of
all modes. In our case, M = {bus, train, tram,walk} as we consider city based
public transport in Melbourne city.
Hop: A hop h = (u, v,m, t) is represented as a tuple, where a person starts from
stop u ∈ S at time t and goes to stop v ∈ S using a transport mode m ∈ M.
Trip: A trip T = [hi]

n
i=1 is a sequence of n hops, where h1.u is the source, hn.v

is the destination and hi.v = hi+1.u for i > 0.
Stop Sequence: The stop sequence of a trip T includes starting stops of the
hops and the destination. It is represented as x(T ) = ⟨h1.u, h2.u, . . . , hn.u, hn.v⟩.
Mode Sequence: The mode sequence of a trip T is the sequence of types of
transport modes of the trip. It is represented as m(T ) = ⟨h1.m, h2.m, . . . , hn.m⟩.
Trip Length: The length of a trip T is defined as the length of its node sequence,
which is l(T ) = |x(T )|
Mode Coverage: Mode coverage mc(T,m) of a mode m in a trip T is the
fraction of the distance of T travelled by m. For simplicity, in the calculation of
mode coverage, we exclude walking distances as distances travelled by walk is
significantly smaller compared to the distance travelled on vehicles.
Query: A query q = (s, d, t) is a tuple of source s ∈ S, destination d ∈ S and
starting time t.
Most Popular Trip (MPT): Given a list of historical trips H and a query
q = (s, d, t), the MPT query predicts the most popular trip T ∗ that starts from
stop s at time t and ends at stop d.
Most Popular Trip with Preferred Mode (MPTPM): Given a list of
historical trips H, a query q = (s, d, t), a preferred mode m and mode coverage
c, the MPTPM query predicts the most popular trip T ∗ that starts from stop s
at time t, ends at stop d and the mode coverage mc(T,m) ≥ c.
Most Popular Trip with Minimum Switch (MPTMS): Given a list of
historical trips H and a query q = (s, d, t), the MPTMS query predicts the most
popular trip T ∗ that starts from stop s at time t, ends at stop d and has a trip
length of l(T ∗) ≤ lq where lq is the minimum length of all trips T ∈ H for query
q, i.e., lq = argminT∈Hl(T ).

Note that, in our deep learning based approach we do not require to define
any explicit popularity metrics; rather, our approach learns from the historical
trips and returns the most likely path as the most popular path. This is also
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recommended as, in many cases, there may not be any direct trip from s to
d in the historical trips, and the proposed algorithms learn to connect s with
d using parts of other existing trips to return the preferred path. Thus, we
predict the most probable trip with respect to the historical trips, and also design
our evaluation metrics accordingly. Please see Section 4.2 for the details of the
evaluation metrics and how predicted trips are compared with real observations.

3 Methodology

Query
KSNet

Key Stops

Forward
LSTM

Backward
LSTM

MPTNet

Most
popular
trip

q = (s, d, t) z
q

Fig. 1. The block diagram of PathOracle

To answer the MPT query
and its variants, we propose
a multi-stage deep learning
architecture, namely PathO-
racle. PathOracle consists of
two major components: the
key stop generation network
(KSNet), and the popular trip
generation network (MPT-
Net). Given a source and a
destination, and the preferred
time of the trip, the KSNet
generates a number of key
stops through which the popular trips from the source to the destination may
pass through. The key intuition of KSNet comes from the observation that most
of the trips pass through key stops such as central stations or transportation
hubs, and thus identifying key stops play a vital role to the popular trip gener-
ation. Based on the identified key stops, we use another deep learning network,
MPTNet, that constructs the popular paths by connecting the source and the
destination via the key stops.

Moreover, to generalize among stops in the same neighborhood and historical
trip frequency among stops, we coin a concept called, Stop2Vec, for learning the
vector representation of stops. Figure 1 shows an overview of PathOracle.

3.1 Stop Representation using Stop2Vec

Inspired by Node2Vec [8], we propose a new representation of stops, namely
Stop2Vec, which learns low-dimensional features of stops based on historical
trips. Learning representations directly from trajectories may be challenging due
to the data sparsity issue of rarely-visited nodes. Also, a simple application of
Node2Vec will not capture underlying popularity in the historical trips. Stop2Vec
addresses both of these issues. The construction of Stop2Vec works as follows.
First, we build a weighted graph G from historical trips. The weight of an edge
(u, v) is the frequency of hops from u to v. Then, we sample R random walks per
node from G. Finally, we adopt the Skip-Gram approach of word embedding as
used in Node2Vec to learn node representation es(x) ∈ Rns for each stop x ∈ S.
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3.2 Time Representation

The travel patterns of users in a city largely vary at different times of the day
(peak vs. off-peak) or on different days of the weeks (e.g., weekdays vs. week-
ends). Also, some transports may only be available for a particular period of
a day. Thus, the popular trip using multi-modal transports between two stops
may change with the time of the day. Thus, to capture the impact of time in
the learning of popular trips, we split a day into σt time windows each having
an interval of σt

24 hours. We represent each of the time windows as a fixed-sized
vector et(t) ∈ Rnt of size nt. For this, both in KSNet and MPTNet, we add
embedding layers that learn the representation of time as et(t) while training.

3.3 Key Stop Generation (KSNet)

The key intuition for KSNet is that if we can identify the key stops such as
transportation hubs of a trip that comes along reaching the destination, we
can predict accurate paths. Thus, KSNet finds the most probable key stops
between a source and a destination for a given time. Formally, given a query q =
(s, d, t), KSNet estimates the probability distribution Pz(x|q), which represents
the probability of any stop x ∈ S being an intermediate stop of a trip from s to d
at time t. To achieve this, we assign KSNet a task to predict every intermediate
stop of a trip from the source, destination, and starting time of the trip. The
learning objective of KSNet is to maximize the sum of log-probability of all
intermediate stops of all historical trips for the respective source, destination,
and starting time. This is represented by the following objective function:

Jθ =
1

|H|
∑
T∈H

 1

l(T )− 2

l(T )−1∑
i=2

log p(xi|T.q, θ)


Here, p(xi|T.q, θ) is a probability estimation of Pz(xi|T.q) based on the learn-

able parameter θ of KSNet. The learned probability function will produce the
likelihood of a stop being an intermediate stop of a query. For KSNet, first, we
generate training samples from historical trips and then use a neural network to
learn the probability function.

Sample Generation. Suppose, a trip T starts at time t and has a stop sequence
⟨x1, x2, . . . xn⟩. Here, the source is x1 and the destination is xn. We generate n−2
training samples from T for KSNet, where the inputs are the source, destination,
and starting time, and outputs are the intermediate stops. For example, the gen-
erated samples from T will be [(x1, xn, t), x2], [(x1, xn, t), x3], . . . , [(x1, xn, t), xn−1].
Similarly, we generate samples for all the trips in H.

KSNet Architecture. For a generated sample [(s, d, t), x], we first obtain the
embeddings of the source, destination and time. The embedding of the source
and destination (es(s), es(d)) is obtained from the learned representation of
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Stop2Vec. The embedding layer et for time is randomly initialized and is tuned
gradually while training KSNet. The core part of KSNet is a Multi-Layer Per-
ceptron (MLP). The MLP takes the concatenation of es(s), es(d), and et(t) as
input. The input is passed through hidden layers of this feed-forward network.
The output layer is comprised of |S| neurons with LogSoftmax activation func-
tion. LogSoftmax produces the log probabilities of all stops being an interme-
diate stop for query q. To maximize the objective function Jθ, we use Negative
Log-Likelihood Loss (NLL Loss).

Prediction. After the training phase, KSNet is able to infer the probability
distribution Pz(x|q) for a query q. We select a list of top K key stops (Zq) for
the trip generation task, where K is a hyperparameter.

3.4 Most Popular Trip Generation (MPTNet)

At the last step of the PathOracle, we develop a separate neural network model,
MPTNet. This part of our solution is motivated by [17] that finds alternate
paths. MPTNet generates the most popular trip from a source to a destination
that passes through the selected key stop. MPTNet consists of two RNN units,
a forward-LSTM, and a backward-LSTM, to capture the forward and backward
influence, respectively, from historical trips. The output of each LSTM unit is
passed through two separate MLPs to predict the stop and the mode.

To generate the most popular trip for a query q = (s, d, t), we obtain the key
stops from KSNet in order of their likelihood, and we use MPTNet to perform
the following procedure for finding a popular trip from source to destination
via the selected key stop. Let Zq

i be a key stop. We generate two candidate
trips using MPTNet for the key stop Zq

i . First, we generate a sub-trip from
Zq
i to s using the backward-LSTM and then consider the generated sub-trip as

the given past sequence to generate another sub-trip from Zq
i to d using the

forward-LSTM. Second, we generate a sub-trip from Zq
i to d using the forward-

LSTM and then treat the generated sub-trip as the future sequence (of the to be
generated trip) to generate another sub-trip from Zq

i to s using the backward-
LSTM. While selecting the next stop for a sub-trip in forward-LSTM, we only
consider those stops that have a hop from the current stop according to historical
trips. A similar strategy is implemented for backward-LSTM too. Finally, of the
two candidate trips generated above, we pick the most probable trip as the most
popular trip. We use the forward LSTM to compute the probability of a trip.

3.5 Preferred Mode Constraint

PathOracle is flexible enough to incorporate the mode preference of the user.
In such a case, we find the most popular trip that mostly uses the preferred
mode of choice. Specifically, we allow a user to give two constraint parameters,
a transport mode m and target mode coverage c. Based on this, we extend the
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KSNet (of Section 3.3) in such a way that the choice of preferred mode can influ-
ence the choice of key stops. For this, KSNet learns another probability function
Pm(x|q,m), which indicates the probability of x being a key stop of the popular
trip from s to d at time t that mostly uses the transport mode m. The preferred
mode m is passed to the MLP of KSNet through a learnable embedding layer
em. The MLP of KSNet takes the concatenation of (es(s), es(d), et(t), em(m)),
and gives the key stops with associated probabilities.

The sample generation for the training phase is also similar to Section 3.3.
Suppose a trip T starts at time t, has stop sequence ⟨x1, x2, . . . , xn⟩ and mode
sequence ⟨m1,m2, . . . ,mn−1⟩. We find the mode mp that has the most mode
coverage in that trip,

mp = argmax
m∈M

mc(T,m)

where mc(T,m) is the coverage of m in T . Then, we generate n − 2 samples:
[(x1, xn, t,mp), x2], [(x1, xn, t,mp), x3] , . . . , [(x1, xn, t,mp), xn−1]. From the gen-
erated samples, KSNet learns to capture the pattern of key stops depending on
preferred modes.

During the trip generation phase, we obtain K key stops from KSNet. In
order of their likelihood, each of the key stops is passed to MPTNet to complete
the trip by connecting the source and destination to the key stop. Once we find
a trip that satisfies the mode coverage constraint, we consider that trip as the
most popular trip with the preferred mode.

3.6 Minimum Switch Constraint

MPTNet allows us to fix the maximum length (L) of a generated trip. Suppose,
MPTNet is generating a candidate trip and it has generated the first sub-trip of
length L1 from a key stop to the source. Then, MPTNet tries to connect the key
stop to the destination within a sub-trip of length L − L1. Thus, MPTNet can
find the most probable trip within length L. This capability facilitates MPTNet
to generate trips with the minimum switch constraint. Specifically, we set L to
the minimum trip length value (i.e., 2) and enforce MPTNet to generate a trip.
If MPTNet fails, L is incremented gradually up to the maximum value until
MPTNet generates a trip.

4 Experiments and Results

In this section, we present the experimental evaluation for our solution, PathO-
racle, to answer the MPT query and its variants. As there is no prior work
that directly answers these problems, we compare our solution with a number of
baselines that we adapted by appropriately modifying state-of-art deep learning
techniques suitable for these tasks.
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4.1 Experimental Setup

Dataset. We use Myki4 dataset which contains real-world public transport
data of Victoria, Australia. The dataset consists of touch-on (getting on a ve-
hicle) and touch-off (getting off a vehicle) events of the first 10 weeks of 2017.
The dataset has 27620 stops, 2357 routes and on average 10 million events per
week. Among the 10 weeks of 2017 datasets - we consider the first 8 weeks as the
training dataset, the 9th week as the validation dataset, and the 10th week as
the testing dataset. Each event has the following information: Mode, Date and
time, User ID, Vehicle ID, Route ID, and Stop ID. We extract the trips taken
by various users by connecting the discrete user events. Finally, we are able to
reconstruct about 18 million trips. The number of trips we use for training, val-
idation, and testing are 14 million (first eight weeks), 2 million (9th week), and
2 million (10th week), respectively.

We define trip length as the number of stops in a trip, including source and
destination. A trip length includes walking events in between changes of vehicles.
For example, if a person takes a train from Clayton to Melbourne Central, then
walks to a nearby tram stop and reaches the University of Melbourne using a
tram, the trip length is four, whereas the number of vehicles involved is 2 (train
and then tram) and the number of vehicle switches is 1 (train to tram). We
exclude the trips with a trip length of more than six or a vehicle count of more
than three because such trips are extremely rare in the dataset.

Baselines. As no prior works focus on finding the popular trip using multi-
modal public transports, we developed three baselines by adopting popular deep
learning frameworks and state-of-the-art techniques.

– LSTM: We adapt vanilla LSTM [10] for popular trip generation using only
forward influence. The output of LSTM is passed to two MLPs: one predicts
the next stop, and the other predicts the next mode of transport.

– FB-LSTM: As a second baseline, we use both forward and backward influ-
ence with FB-LSTM (Forward-Backward LSTM) to answer our popular path
queries. We separately train the two LSTM models, namely forward-LSTM
for modeling forward influence and backward-LSTM for modeling backward
influence. In this approach, we predict two trips from these two models and
take the most probable one.

– DeepST: As the final baseline, we extend DeepST [12], which is the state-of-
art model for finding the most probable trip for a given source, destination,
traffic condition, and historical trajectories of taxi trips. We modify DeepST
to predict sequences of stops and sequences of modes.

For consistency, each baseline is implemented to predict only those stops that
have a hop from the current stop according to historical trips. On top of that, as
there is no way to incorporate constraints during learning for the baselines, for

4 https://www.ptv.vic.gov.au/tickets/myki/

https://www.ptv.vic.gov.au/tickets/myki/
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preferred mode and minimum switch constraints, we implement Beam Search
for each of the baselines. We generate 20 alternate trips using Beam Search and
select the most optimal one according to the constraints. We observed that these
two strategies improve the performance of the baselines.

Implementation Details. In Stop2Vec, we generate R = 80 random walks per
stop. Random walks are generated up to a length of 10. The window size of the
Skip-Gram model is set to 5. For PathOracle, the sizes of stop, time, and mode
embeddings are set to 256, 36, and 36, respectively. We split 24 hours of a day
into σt = 4 windows, each with a 6-hour interval. The MLP in KSNet has four
layers where two hidden layers of size 128 and 32, respectively, are used. Forward
and backward LSTMs of MPTNet are two single layer LSTM units with hidden
size 512. The maximum allowable trip length L is set to 6 (as trips of more than
six stops are extremely rare and thereby discarded from our dataset). We select
top K = 20 key stops from KSNet. Models including baselines are implemented
in PyTorch and are trained with one NVIDIA GeForce GTX 1080 GPU. Models
are trained up to 30 epochs with Adam optimizer [11] and batch size 128.

4.2 Evaluation of MPT Query

In this section, we evaluate PathOracle against the baselines on the performance
of generating the most popular trip for MPT queries.

Evaluation Metrics for MPT. The performance of an MPT query is evalu-
ated based on five metrics: stop accuracy, stop recall, mode accuracy, mode recall,
and reachability. The measurement of accuracy and recall is based on the met-
rics used in DeepST [12]. For a given ground-truth sequence y and a prediction
sequence y∗, we can define the metrics as follows.

– Accuracy is the ratio of the count of correctly predicted stops/modes to the
maximum length between y and y∗. Accuracy = |y∩y∗|

max(|y|,|y∗|)
– Recall is the ratio of the count of correctly predicted stops/modes from the

first |y| stops of y∗ to the length of y. Recall is measured for both stop
sequence and mode sequence. Recall =

|y∩y∗
1:|y||

|y|
– Reachability is a boolean metric. If a predicted trip is able to reach the

destination, the reachability of the trip is one. Otherwise, it is zero.

Performance Comparison. Table 1 and 2 show the performances of different
approaches on predicting stop sequence and Table 3 and 4 show the performances
on predicting mode sequence. Lastly, we show the performance on finding a trip
to the destination. Here, we vary the trip length as 2, 3, 4, 5, and 6.

For shorter length of trips (i.e., 2-4), all models perform similarly well be-
cause it is relatively straightforward to capture short-range dependencies. As
trip length becomes longer (i.e. 5-6), the performances of all methods drop. This
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Table 1. The stop sequence accuracy ver-
sus trip length

Trip Length
Models 2 3 4 5 6

PathOracle 0.98 0.97 0.83 0.80 0.73
DeepST 0.97 0.96 0.82 0.76 0.63

FB-LSTM 0.96 0.94 0.75 0.69 0.51
LSTM 0.95 0.91 0.79 0.69 0.48

Table 2. The stop sequence recall versus
trip length

Trip Length
Models 2 3 4 5 6

PathOracle 0.98 0.97 0.83 0.80 0.73
DeepST 0.97 0.96 0.82 0.76 0.63

FB-LSTM 0.96 0.94 0.75 0.69 0.51
LSTM 0.95 0.91 0.79 0.69 0.48

Table 3. The mode sequence accuracy
versus trip length

Trip Length
Models 2 3 4 5 6

PathOracle 0.97 0.96 0.90 0.88 0.84
DeepST 0.96 0.97 0.62 0.67 0.51

FB-LSTM 0.95 0.94 0.84 0.82 0.70
LSTM 0.95 0.90 0.87 0.79 0.71

Table 4. The mode sequence recall versus
trip length

Trip Length
Models 2 3 4 5 6

PathOracle 1.00 0.97 0.92 0.88 0.84
DeepST 1.00 0.97 0.65 0.69 0.54

FB-LSTM 0.99 0.95 0.86 0.82 0.73
LSTM 1.00 0.91 0.91 0.81 0.75

is because (i) the number of possible trips from source to destination increases
rapidly with the increase of trip length, and (ii) capturing the long-range de-
pendencies among stops in long sequences is challenging. We observe that, for
lengths 5 and 6, PathOracle outperforms every other model significantly in ac-
curacy and recall metrics. This is because PathOracle significantly reduces the
number of possible trips by fixing a key stop between source and destination. The
inclusion of the key stop also reduces the length of the sequence to be generated,
thus, tackling the challenge of modeling long-range dependencies.

Moreover, PathOracle and FB-LSTM show significantly better reachability
than others in long trips. In shorter trips, models perform similarly. However,
especially for lengths 6, PathOracle and FB-LSTM are able to generate a valid
trip to destination 94% times, whereas DeepST is able to generate such a trip
only 83% times. Both PathOracle and FB-LSTM employ forward and backward
influences together and thus have a better chance of reaching to destination
compared to others, which is also evident from the results.

4.3 Evaluation of MPTPM Query

In this section, we compare the performance of models in generating the most
popular trip with a preferred mode constraint. The constraint consists of a pre-
ferred mode m and a target mode coverage c.

Metric for MPTPM. The performance of a predicted trip of an MPTPM
query is measured by the metric, Coverage Score. Coverage score is the ratio
of the coverage of the preferred mode cp in the predicted trip and the target
coverage c. Coverage Score = min(1, cp/c). The maximum value of a Coverage
Score can be 1. Also, if the predicted trip does not reach the destination, the
coverage score will be 0.
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Preferred: Bus, Length: 5

Preferred: Bus, Length: 6

Preferred: Train, Length: 5

Preferred: Train, Length: 6

Preferred: Tram, Length: 5

Preferred: Tram, Length: 6

PathOracle DeepST FB-LSTM

Fig. 2. Performance under preferred mode constraint on test dataset queries

Performance Comparison. We evaluate performance for different preferred
modes (bus, train, tram) with different mode coverages. Evaluating performance
under this constraint is challenging because (i) there is no information about
mode preferences in the dataset and (ii) a trip with random preferred transport
mode and desired coverage may not be possible. So, for fair evaluation, we gen-
erate queries from the test dataset in such a way as to increase the chance of
the existence of trips for those queries. The generation of queries is done in two
approaches.

Firstly, we consider only the test dataset. For a transport mode m, we find
the trips in the test dataset where the coverage of m is higher than other trans-
port modes. From each of these query trips T , we query each method six times
with the same source T.s, destination T.d, time T.t, and preferred mode m, while
varying target coverage c from 0.5 to 1.0 with a 0.1 interval. We also keep track
of the lengths of the trips we generated the queries from. We show the mean
coverage score of MPTPM queries in Figure 2 for different preferred modes and
lengths of the query trip. As the performance of the methods largely varies for
long sequence trips, we only show the results for lengths 5 and 6. Here, PathO-
racle consistently shows better performance than DeepST and FB-LSTM in all
cases. This is because KSNet can effectively select preferred mode-specific key
stops that increase the mode coverage while MPTNet generates the popular trips
through them. The coverage score of each method decreases with the increase of
c.

Secondly, we generate only those queries from the test dataset such that
each query has a trip in the historical dataset that satisfies the constraint. Let,
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Preferred: Tram, Length: 5

Preferred: Tram, Length: 6

Preferred: Bus, Length: 5

Preferred: Bus, Length: 6

Preferred: Train, Length: 5

Preferred: Train, Length: 6

Fig. 3. Performance under preferred mode constraint on historical queries

T is the trip in the test dataset we are currently considering and m is our
preferred mode. We find the maximum coverage (cm) of m for all trips between
T.s and T.d at time T.t in the historical dataset. If cm < 0.5, we discard the trip.
Otherwise, we set target coverage to c, where value of c is 0.5, 0.7 or 0.9 when
cm is within [0.5, 0.6), [0.7, 0.8) or [0.9, 1.0), respectively. Then, we generate an
MPTMP query with source T.s, destination T.d, time T.t, preferred mode m,
and target coverage c. We keep track of the length l of the historical trip where
m has the maximum coverage cm. We generate such queries for bus, train, and
tram, for length l = 5, 6. Figure 3 shows the mean coverage score of models
for different preferred modes and coverages. We observe that the PathOracle
outperforms the baselines in all cases except one. We observe a lack of pattern
with the change of c. This is because in each case of preferred mode, length, and
target coverage, results are coming from a particular set of queries tailored for
that case.

4.4 Evaluation of MPTMS Query

In this section, we compare the capabilities of the methods in finding the most
popular trip with minimum change of vehicles. In other words, we want to gen-
erate the most popular trip with a minimum trip length. Models are compared
based on two experiments.

In the first set of experiments, we evaluate models based on historical ground
truth of minimum length. For each query q = (s, d, t) in the test dataset, we find
the minimum length lm of all historical trips that start from s at t and end in d.
Then each of the methods predicts its most popular minimum trip for q. Say, the



14 M.T. Mahmood et al.

length of a predicted trip is lp. We define a metric ML Score (Minimum Length
Score), that measures the ratio of lm and lp. ML Score = min(1, lm/lp). If the
length of the predicted trip is less than or equal to lm, the score is 1.

In the first four columns of Table 5, we show the mean ML scores of different
methods against different lm. For the lack of variation in the score and for space
constraints, we exclude the results for shorter paths. We observe that PathOracle
consistently surpasses the competing methods, especially for length 6. This is
because PathOracle can effectively impose restrictions on the trip generation
process by reducing L. Whereas, FB-LSTM and DeepST are producing alternate
trips using Beam Search without any consideration of the constraint.

Table 5. Performance comparison of different methods in MPTSM query

Historical Minimum Length Comparative
ScoreModels 4 5 6

PathOracle 0.999 0.999 0.975 0.958
DeepST 0.918 0.886 0.715 0.802

FB-LSTM 0.995 0.991 0.859 0.906

For the second set of experiments, we compare the methods in the test
dataset. We define a metric, Comparative Score, which is the fraction of cases
where a model generated the shortest trip compared to other methods. Compar-
ative scores of PathOracle, DeepST and FB-LSTM in this experiment are shown
in the last column of Table 5. PathOracle outperforms DeepST and FB-LSTM
by a significant margin.

5 Related Works

Trip planners like Google maps, PTV Journey Planner [1], OpenTripPlanner [2],
etc., are widely used by millions every day commuting in a city using public
transport. These planners use shortest path algorithms to find the fastest (or
shortest/cheapest) route on the public transport network, given the schedule
of the services run on the transport network. To facilitate these planners with
real-time transit data, a number of works (e.g., [3, 4, 20]) proposed multi-modal
trip planning algorithms. All these systems and algorithms work on the pro-
vided public transport network and public transport schedules of the services to
recommend a route.

Though no work exists for learning based multi-modal popular trip planning,
automated route planning (that considers trips with a single vehicle, such as taxis
or cars) between two locations based on historical trajectories has been studied
extensively in recent years. These studies tackle a variety of route planning
related tasks such as the most popular trip planning [6, 12], personalized route
recommendation [5,7,14], route pattern modeling [19], route cost estimation [15],
travel time estimation [13, 18], etc. Next, we will discuss the works on route
planning and path recommendation from historical trajectories.
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MPR [6] finds the most popular route between a source and a destination
from historical trajectories. It works without road network data by first creat-
ing a transfer model to estimate the transfer probability of nodes. The most
popular path is inferred by finding a path that maximizes the probability ac-
cording to the transfer model. L2R [9] solves the problem of route planning in
sparse trajectories. They learn the routing patterns between frequent regions
and then transfer those patterns to regions with sparse trajectories. However, to
answer time-based queries, both L2R and MPR have to create multiple models
for different time ranges. MFP [16] is a search-based technique that considers
the temporal context in finding the popular path. It searches the most frequent
path from a source to a destination for a time frame in history. MFP processes
a query by instantly building a sub-graph that captures the historical routing
information for that time frame, then finds the most frequent path from the sub-
graph. Being a search-based algorithm, query processing in MFP is expensive in
computation and memory.

Recently, Li et al. [12] propose DeepST, a deep probabilistic model to learn
spatial transition patterns from taxi trajectories. DeepST incorporates the im-
pact of the past traveled route, destination, and real-time traffic condition for
route generation, which shows the best performance in generating the most prob-
able route. We have considered DeepST as one of our baselines by modifying it
for the multi-modal popular path problem. To the best of our knowledge, none of
the previous works can learn to generate popular multi-modal trips considering
the impact of the time of the day and user preferences in a unified model.

6 Conclusion

In this paper, we have introduced the problem of answering the most popular
path query by learning historical trips in the context of multi-modal public
transports based city commuting. To solve this problem, we have developed a
multi-stage deep learning architecture, PathOracle, that enables users to find
the popular path for a given source-destination pair and the time of the travel.
The PathOracle can gracefully accommodate user preferences constraints such
as preferred mode of transports, and minimum number of switches in the trip.
We have conducted an extensive experimental study with a large real-world
public transport based commuting Myki dataset of Melbourne city. The results
show that PathOracle outperforms all the baselines significantly, especially while
answering longer trips involving multiple modes of public transport.
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