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DeepAltTrip: Top-k Alternative Itineraries for Trip
Recommendation

Syed Md. Mukit Rashid, Mohammed Eunus Ali, and Muhammad Aamir Cheema

Abstract—Trip itinerary recommendation finds an ordered sequence of Points-of-Interest (POIs) from a large number of candidate
POIs in a city. In this paper, we propose a deep learning-based framework, called DeepAltTrip, that learns to recommend top-k
alternative itineraries for given source and destination POIs. These alternative itineraries would be not only popular given the historical
routes adopted by past users but also dissimilar (or diverse) to each other. The DeepAltTrip consists of two major components: (i)
Itinerary Net (ITRNet) which estimates the likelihood of POIs on an itinerary by using graph autoencoders and two (forward and
backward) LSTMs; and (ii) a route generation procedure to generate k diverse itineraries passing through relevant POIs obtained using
ITRNet. For the route generation step, we propose a novel sampling algorithm that can seamlessly handle a wide variety of
user-defined constraints. To the best of our knowledge, this is the first work that learns from historical trips to provide a set of
alternative itineraries to the users. Extensive experiments conducted on eight popular real-world datasets show the effectiveness and
efficacy of our approach over state-of-the-art methods.

Index Terms—Trip Recommendation, Alternate Paths, Deep Learning.
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1 INTRODUCTION

D ECIDING suitable itineraries is often challenging for
tourists in an unfamiliar city. Due to the popularity of

location-based social networks, an unprecedented volume
of historical trips and itineraries, each represented as an
ordered sequence of Points-Of-Interest (POIs) visited, has
become available. This opens up a new avenue to learn
popular and suitable itineraries from the historical trip1

data. In the past few years, many techniques [1], [2], [3],
[4] have been proposed that learn from historical trips in the
city and recommend the most popular itinerary from a given
source s to a given destination d. Intuitively, such a popular
itinerary system returns a sequence of POIs which has been
most frequently adopted by past users while traveling from
s to d.

However, recommending a single itinerary is often too
restrictive and may not meet a user’s needs. Therefore, it
is preferable to recommend multiple alternative itineraries.
Quality alternative itineraries 2 must not only be popular,
but also dissimilar (or diverse) to each other. Without loss
of generality, we use the terms diversity and dissimilarity
interchangeably as both refer to the alternate itineraries
with minimum overlap. In this paper, we propose learning-
based techniques to report k alternative itineraries that are
popular and are also dissimilar to each other. To the best
of our knowledge, we are the first to learn multiple quality
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1. Trips, routes, and itineraries can be used interchangeably; however,
hereafter we use trips/routes to denote historical paths of users and
itineraries to refer to the recommended paths.

2. By quality alternative itineraries, we mean itineraries that are both
popular and diverse.

alternative itineraries from historical routes that are both
popular and diverse with each other at the same time.
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Fig. 1: Different routes in Rome, each from the Central
Station s to a hotel d, passing through POIs p1 to p9.

Motivating Example: Figure 1 shows an example where,
for a source s (Rome Central Station) and a destination d (a
hotel), five different historical routes (R1 to R5) are shown
in solid black colored lines that pass through nine POIs
in total (p1 to p9). Assume that the routes in descending
order of popularity are given as R1, R2, R3, R4 and R5.
Existing systems that return the most popular itinerary
would learn to return R1. If the user wants the top-2 popular
itineraries, R1 and R2 would be recommended which are
both very similar to each other as R1 = (s, p1, p3, p5, d)
and R2 = (s, p1, p2, p3, p5, d). This may not be desirable
for a user looking for alternative itineraries to choose from.
Also, if a system attempts to return diverse itineraries
not considering their popularity, it may return R1 and
R5 = (s, p6, p7, p9, d). This may also be not desirable, as
itinerary R5 is not well supported by the historical trips.
In this case, a better solution is to return two popular yet
diverse itineraries such as R1 = (s, p1, p2, p3, p5, d) and I2 =
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(s, p1, p4, p8, d). These two will be considered as quality
alternatives by the querying user. Note that I2 (shown in
red dotted lines) does not exist in the historical routes.
Our learning-based algorithms are able to discover popular
and diverse itineraries that do not necessarily exist in the
historical trips (e.g., I2).

Limitations of Existing Works: All existing learning-
based itinerary recommendation systems [1], [2], [3], [4] are
designed to recommend the most popular itinerary and,
to the best of our knowledge, there does not exist any
learning-based technique to recommend multiple alterna-
tive itineraries.

There exists some search-based techniques [5], [6], [7], [8]
that return a set of diverse itineraries based on pre-defined
popularity and/or diversity objective functions. However,
these techniques are not applicable to the problem studied
in this paper because the notion of diversity used in these
techniques is different from ours. For example, [5] aims
to return routes such that the POIs within a route have
diverse features. In contrast, we consider two itineraries to
be more diverse if they have a smaller overlap (i.e., have
fewer common POIs), so that they would be considered
as alternatives with respect to each other. Also, [6] defines
diversity to be the minimum Euclidean distance of any two
POIs in two different itineraries. Thus, two itineraries that
have even one common POI are considered to have zero
diversity even if all other POIs are very different and far
from each other.

Furthermore, these search-based techniques suffer from
a number of limitations. First of all, most of these works only
consider optimising either the popularity or the diversity,
and do not take both into account at the same time while
recommending a set of itineraries. However as we explain
in our motivating example, attempting to optimize only
diversity or only popularity without considering the other
would not lead to quality alternative itineraries. Secondly, as
noted in [9], it is not trivial to define quantitative measures
to evaluate the quality of alternative itineraries and there is
no agreed definition of what constitutes a set of high-quality
alternative itineraries. But these search-based techniques
typically require explicit modeling of popularity and/or
diversity. Users may not have any prior knowledge to define
and tune such metrics and, more importantly, these tech-
niques may not be able to recommend suitable itineraries if
the user fails to do so. Thirdly, since these systems do not
learn from the historical trips, they cannot incorporate the
semantics of the sequence of visits in their solution. Last but
not the least, these algorithms are unable to handle user-
defined constraints which limit their applicability.

Our Contributions: We address the above limitations
and propose two novel deep-learning-based algorithms,
called DeepAltTrip-LSTM and DeepAltTrip-Samp, that learn
from the historical trips and recommend k alternative
itineraries that are both popular and diverse. A key com-
ponent of these algorithms is the Itinerary Net (ITRNet),
which estimates the likelihood of different POIs to be in an
itinerary, using two LSTMs.

Also, both of our algorithms are metric-agnostic in the
sense that these do not require or rely on any specific
diversity or popularity metrics, i.e., the users do not need to
worry about defining suitable popularity or diversity met-

rics. Nevertheless, we extensively evaluate the algorithms
using some widely used popularity and diversity metrics
on real-world datasets, and these experimental studies show
that both algorithms recommend high quality alternatives.

In many real-world applications, users may want to
impose certain constraints on the alternative itineraries rec-
ommended by the system. For example, the total cost to visit
the POIs (including traveling cost and entry tickets etc.) in
each recommended itinerary must not be more than a user
defined budget or each recommended itinerary must pass
through some specific “must-see” POIs chosen by the user
etc. Existing learning-based algorithms are unable to triv-
ially handle such constraints. We propose a novel sampling
algorithm, DeepAltTrip-Samp, that can seamlessly handle a
wide variety of such user defined constraints. It employs an
enhanced Markov Chain Monte Carlo (MCMC) algorithm,
a variation of Gibbs sampling [10], which facilitates in
pruning the candidate itineraries that do not meet the user
defined criteria.

Our contributions in this paper are summarized below.
• We are the first to present learning-based algorithms

called, DeepAltTrip-LSTM and DeepAltTrip-Samp, to rec-
ommend k alternative itineraries using historical trips
without requiring any explicit popularity or diversity
modeling.

• A unique advantage of our algorithm DeepAltTrip-Samp
is that it can seamlessly support additional constraints
on the generated itineraries.

• We conduct an extensive experimental study using 8
real world datasets drawn from two domains and eval-
uate the algorithms on several widely used popularity
and diversity metrics. The results demonstrate that our
metric-agnostic algorithms propose high quality results
and significantly outperform the competitors.

2 RELATED WORKS

To our knowledge, there is no work that directly solves the
problem of recommending multiple alternative itineraries
through learning from historical trips. However, there are
three realms of work relevant to our problem: traditional
trip recommendation system that recommends a single
itinerary, either through heuristics or through learning;
search based techniques that attempt to return top k
itineraries based on an optimization problem to maximize
an explicitly defined objective function; and POI recommen-
dation methods that are mostly focused on recommending
individual POIs rather than itineraries.

2.1 Trip Recommendation Systems

Earlier works model tour recommendation as an orienteer-
ing problem, where the goal is to find an itinerary that
maximizes a certain objective function (e.g., popularity)
satisfying given constraints (e.g., budget). [11] constructs
itineraries based on user visits by first constructing a POI
graph and then generating an itinerary based on this graph
that maximizes the total POI popularity within the user
budget. [12] argues that popular routes cannot be properly
inferred only through counting from historical routes, and
proposes a heuristic solution by first obtaining a transfer
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network and then inferring itineraries based upon an ab-
sorbing Markov Chain model built based on the network.
[13] recommends itineraries based on user budget, time
limitations and past historical data. [14] uses a two phased
approach where it first interacts with the user to know her
venue specifications and then uses crowd-sourced data to
generate personalized POIs for the user. [1], [15] provide
personalized user recommendation through modeling the
problem as an integer programming problem given the
budget constraints. [2] is the first to learn POI preferences
and optimize the itinerary based on historical trip data and
various features such as POI category, distance, and visiting
time. Several other variations of the trip recommendation
problem have been studied [16], [17], [18]. A comprehensive
survey on this group of works is presented in [18]. Since
human mobility is correlated with the location and cate-
gory of POIs, [19] and [3] proposed an adversarial model
to generate an itinerary for a user query. [4] provided a
personalized itinerary through a Nerualized A* search using
LSTM and self attention to estimate an observable cost and
an MLP leveraging graph attention models to estimate the
heuristic cost. [20] adopts an encoder-decoder mechanism
to exploit the POI transition patterns to provide an end
to end trip recommendation. [21] uses a spatio-temporal
attention network, which captures the relevance between
non-adjacent locations and non-consecutive user visits. It
adopts a bi-attention network. [22] uses a self-supervised
model that incorporates a hierarchical RNN and Contrastive
Learning to learn user interest over tours and provide better
personalized trip recommendations.

All of the above methods provide a single itinerary as
trip recommendation for a given source and destination
pair. They cannot be trivially extended for providing k
diverse and popular itineraries. One way to adapt these
techniques to generate k itineraries is to to incorporate an
extra layer such as beam search on top of these models.
However, the above adaption for multiple itineraries is not
well suited to achieve our goal as they cannot capture
the diversity among alternative itineraries. In contrast, our
proposed model considers both the popularity and diversity
and is well suited to provide quality alternative itineraries
that are both popular and diverse.

2.2 Search Based Techniques for k Itineraries
This realm of work adopt search based techniques to pro-
vide k itineraries. Liang et al. [5] provide top k itineraries
through searching, where they use a sub-modular function
to specify diversity requirement. Xu et al. [6] compute
itineraries maintaining a minimum spatial distance covering
a set of POI categories, where the objective is to maximize
the popularity satisfying the diversity constraints. Wang
et al. [23] leverage POI semantics information to develop
an efficient algorithm for providing k itineraries with the
least cost. [24] provides top-k trajectories based on user
suggested location and category keyword preference. Major
focus in all these works is to reduce query processing time
for search algorithms, where they gather statistical POI data
and require explicit diversity constraints to guide the search
process.

Another group of works attempt to determine alterna-
tive routes for shortest path queries through searching in a

road network graph. [25], [26] leverage penalty based tech-
niques to increase edge weights of previously used paths
to gain k shortest paths which maintain some diversity.
[27] creates separate shortest-path trees from the source and
destination nodes. The connecting branches, called plateaus
are considered for alternative routes, as longer plateaus tend
to have higher dissimilarity. [7], [8] define a dissimilarity
function and then attempt to find alternative paths that
exceed a pre-defined user dissimilarity threshold.

All these search based techniques primarily define ex-
plicit objective functions and provide algorithms to optimize
them. In contrast to these works, the focus of our work is
to develop a learning based approach that finds popular
and diverse itineraries based on the historical trips. Thus, in
our case, no explicit definition of any objective function is
required to generate itineraries.

2.3 POI Recommendations
Another group of works orthogonal to our research is next
POI recommendation [28], [29], [30], where the objective is
to recommend one or multiple POIs to visit next based on
user’s preferences. Another set of works include package-
POI recommendations [31], [32], which provide diversity
in a group of POIs in a region. However none of above
techniques focus on recommendation of itineraries (i.e., an
ordered sequence of POIs).

3 PROBLEM FORMULATION

Let Q = {p1, p2, ..., pN} be the list of N POIs in a city. Each
POI pi ∈ Q is represented as a (loc, cat) pair, where loc is
the location of pi represented by its latitude and longitude
co-ordinates ⟨lat, long⟩ and cat ∈ C is the category type
of pi. Let D be a multiset containing all historical routes of
the past users visiting POIs in Q. Each route R ∈ D is an
ordered sequence (r1, r2, ..., rT ) of POI visits, where rt ∈ Q
is the POI at position t in the route and T is the total number
of POIs in the route.

Given historical routes D and a query q(s, d, k) with
starting location s ∈ Q, ending location d ∈ Q and an
integer k, our aim is to recommend a set of k alternative
itineraries {I1, I2, ..., Ik} that are both diverse and popular,
where each itinerary Ii is an ordered sequence of POIs
(r1, r2, ..., r|Ii|) with r1 = s and r|Ii| = d.

Intuitively by popular itineraries we mean that the se-
quence of POIs visited have been frequently adopted by past
users going from s to d, and by diversity or dissimilarity
we mean that the set of recommended itineraries have
minimal overlap. Specific metrics to evaluate popularity and
diversity are mentioned in Section 5.3.

Note that unlike in a search based procedure a recom-
mended itinerary Ii is not necessarily a historical route, i.e.,
it is possible that Ii /∈ D. Also note that we attempt to learn
to recommend alternative itineraries rather than attempting
to maximize any popularity or diversity metric.

4 OUR APPROACH

The DeepAltTrip consists of two main components: (i)
the Itinerary Net (ITRNet) to estimate the probabilities of
POIs at a particular position of a given itinerary by using
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two (forward and backward) LSTMs, and (ii) an itinerary
generation algorithm to generate k alternative itineraries
passing through prominent POIs obtained using the ITR-
Net. For itinerary generation we propose two variants of
DeepAltTrip: first one is an LSTM based itinerary generation
technique, and the second on is a sampling based technique
that provides flexibility to accommodate user constraints. A
flowchart of our proposed solution is presented in Figure 2.

Notation Meaning
D Dataset consisting of historical routes
Q List {p1, p2, ..., pN} of N POIs in D

q(s, d, k) User query with source POI s, destination POI
d and k no. of itineraries

Sgr Ground truth set of routes with unique (s, d)
pair

SREC Recommended set of itineraries for query q
k No. of itineraries in SREC

L length of recommended itineraries
pi ith POI in POI list Q

q(s), q(d) Input source and destination POI to the model
(r1, · · · , rT ) Route with length T

ra:b Shorthand for route (ra, ra+1, · · · , rb) where
b > a

ts, td Position of source and destination POI
rt POI at position t

p(p) Prominent POI
R(j) Itinerary generated at iteration j

r
(j)
t POI at position t on the itinerary R(j)

Ri ith route in D or Sgr

O[pi] No. of occurrences of POI pi

TABLE 1: Table of Notations

4.1 ITRNet Model
The ITRNet consists of two LSTM’s, namely a forward and
a backward LSTM. The forward LSTM takes a partial route
sequence from the starting POI and estimates the probability
of a POI being the next POI in the route sequence. The
backward LSTM takes a route sequence in reverse order,
starting from the destination POI, to estimate the next POI
in the reverse route sequence. Both LSTM’s also take into
consideration the actual source and destination POIs of the
route being generated.

Let R = (r1, r2, ..., rt−1, xt, rt+1..., rT ) be a route, p(s) =
r1 and p(d) = rT are the source and destination POIs
respectively. Formally, given the forward partial sequence
r1:t−1, the source p(s) and destination p(d), the probability
of ith POI pi ∈ Q replacing xt, can be computed as:

Pf (xi,t|p(s), p(d)) = p(xt = pi|r1:t−1, p
(s), p(d)) (1)

Similarly, given the backward partial sequence rt+1:T , the
source p(s) and destination p(d), the probability of ith POI
pi ∈ Q replacing xt can be computed as:

Pb(xi,t|p(s), p(d)) = p(xt = pi|rt+1:T , p
(s), p(d)) (2)

Note that Equations 1 and 2 require a subroute at one
end (e.g., r1:t−1 or rt+1:T ) and a POI (e.g., s or d) at the
other end to compute the probability of a POI to be at
location t. We compute the probabilities of all N POIs in Q,
which is denoted as N -dimensional vectors Pf (xt|p(s), p(d))
and Pb(xt|p(s), p(d)), respectively3, where each element i in

3. We denote vectors in bold letters throughout the paper.

Pf (xt|p(s), p(d)) and Pb(xt|p(s), p(d)) represents the condi-
tional probabilities defined in Equation 1 and 2 respectively.
The forward LSTM computes Pf (xt|p(s), p(d)), while the
backward LSTM computes Pb(xt|p(s), p(d)).

To develop the ITRNet, we first compute POI embed-
dings, which would be later used to train the subsequent
ITRNet forward and backward LSTM models.

4.1.1 Obtaining POI Embeddings

To capture the spatial and semantic information of POIs in
the ITRNet, we use two graph autoencoders [33] to get the
embeddings of POIs. These embeddings enable the LSTM
models to accurately compute the probability of POIs even
if the historical visits to the POIs are sparse.

We first define two graphs GC = (Q,EC) and GD =
(Q,ED) for POI categories and spatial distance respectively.
The nodes of both graphs are the POIs. The weight of an
edge between two nodes in GC and GD is related to the cate-
gorical similarity and the distance of the two corresponding
POIs, respectively.

The adjacency matrix AC for graph GC is defined as:

ACij =

{
1 if pi.cat = pj .cat
0 otherwise

This adjacency matrix captures the categorical similarity
between POIs, where POIs with the same category have a
connection. On the other hand, the adjacency matrix AD of
GD is defined as:

ADij
=

edmax−dist(pi,pj) − edmax−dmin

1− edmax−dmin

Here dist(pi, pj) is the distance between POI pi.loc and
pj .loc, and dmax and dmin are the maximum and minimum
distances between any two POIs, respectively.

We use the Euclidean distance between two POIs cal-
culated using their latitude and longitude, which is a
reasonable approximation of the road network distance
[34]. Without loss of generality, Euclidean distances can be
replaced with road network distances if underlying road
network is available. We use exponential terms to amplify
the difference between the normalized weight values.The
AD matrix gives a larger weight to edges between POIs that
are nearer to each other. If d(i, j) = dmin, ADij is set to
1, as the edge weight is the highest when the distance is
minimum. Conversely, if d(i, j) = dmax, ADij is set to 0.

We train two graph autoencoders, one based on POI
categories and one based on POI distances. We obtain two
embeddings ZC ∈ R|Q|×ec and ZD ∈ R|Q|×ed from
the two graph autoencoders, respectively, where ec and
ed are the embedding dimensions. The two autoencoders
are trained separately. The output embeddings ZC and ZD

are concatenated together to produce the final embedding
Z = ZC||ZD. Here Z ∈ R|Q|×(ed+ec),‘||’ is the con-
catenation operation and ith row of Z corresponds to the
embedding of POI pi ∈ Q.

To train the graph autoencoder based on POI category,
we adopt the adjacency matrix AC . The reconstructed adja-
cency matrix for AC is computed as ÂC = RELU

(
ZCZ

T
C

)
,

where, ZC = GCN(X,AC) is the category embedding ZC.
Here, X is the featureless identity matrix input, and GCN is



5

Fig. 2: Overview of The DeepAltTrip Algorithm.

a graph convolution operation [35]. The cross-entropy loss
between ÂC and AC is used as the loss function.

Similarly, we train the graph autoencoder based on
POI distances, where we use the adjacency matrix AD

and find the reconstructed adjacency matrix as ÂD =
RELU

(
ZDZT

D

)
, with ZD = GCN(X,AD) being the dis-

tance embedding. The MSE between ÂD and AD is used as
the loss function. Thus, the learned embeddings ZC and ZD

capture the categorical and distance information between
POIs, respectively, which helps the downstream models to
predict the next POI in a route more accurately.

4.1.2 Obtaining Forward and Backward LSTM Models
This is the main component of ITRNet, which uses two
LSTMs to generate two conditional probabilities based on
a known partial route sequence, a given source POI and
a given destination POI. It also uses the POI embeddings
obtained from the previous step.

To estimate the forward conditional probability
Pf (xi,t|p(s), p(d)), we first obtain the encoding of the
given partial route sequence. The encoding of a sub-route
upto any position j, that is the partial route (r1, r2, ..., rj)
where 1 ≤ j ≤ t − 1 is obtained using a forward LSTM
model as follows.

hj
f = LSTMF (zrj ||zp(s) ||zp(d) ,h

j−1
f )

where, zrj , zp(s) , zp(d) is the embedding of POI rj at step j,
source POI p(s) and destination POI p(d) respectively, hj−1

f

is the hidden state LSTM vector at j−1, and hj
f is the hidden

state vector at step j.
After obtaining the encoding of the observed sub-route,

we calculate the probability of a POI pi for position t as:

Pf (xi,t|p(s), p(d)) =
αi,t∑|N |
i=1 αi,t

where
αi,t = MLP (zpi ||ht−1

f )

Here zpi is the POI embedding of POI pi , ht−1
f is the sub-

route encoding upto t− 1 and MLP is a two-layer percep-
tron network, which outputs a score αi,t ∈ R. Passing these
scores through a softmax layer gives us the final forward
conditional probability estimation vector Pf (xt|p(s), p(d)).

The MLP thus computes the probability of a POI pi being
the next POI rt in the route, given the encoding of the partial
route upto step t− 1 and the embedding of the POI zpi .

Similarly, we develop the backward LSTM model
to estimate the backward conditional probability
Pb(xi,t|p(s), p(d)). It takes the backward sub-route
(rt+1, rt+2, ..., rT ) in reverse order, along with the source
POI p(s) and destination POI p(d). Essentially, we generate
the encoding hj

b at step j, where t+ 1 ≤ j ≤ T , as follows.

hj
b = LSTMB(zrj ||zp(s) ||zp(d) ,h

j+1
b )

Using the above encoding and the earlier POI embeddings
we estimate Pb(xt|p(s), p(d)). The procedure is similar to the
procedure to obtain Pf (xt|p(s), p(d)), so we do not repeat it
here. Thus the forward LSTM predicts the next POI given
a forward partial route sequence, whereas the backward
LSTM predicts the next POI in the reverse partial route
sequence, i.e. the immediate previous POI given a sequence
of POIs visited after the predicted POI.

While training, we adopt the binary cross-entropy loss
to train both the LSTM models.

4.2 Generating Itineraries Using ITRNet

In this phase, we generate k alternative itinerary recom-
mendations using the ITRNet backward and forward LSTM
models. Given a query q(s, d, k), we first compute a rel-
evancy score of all POIs for a given source POI s and
destination POI d using the ITRNet. Then, at each iteration
we extract a prominent POI based on the computed relevancy
scores and generate k alternative itineraries each going
through a different prominent POI.

We first describe how we compute the POI relevancy,
after that we describe how an itinerary is generated. Finally
we describe how k alternative itineraries are obtained in an
iterative manner.

4.2.1 Obtaining Prominent POI

By using the ITRNet, we define a relevancy function that
outputs a relevancy score for every POI for given query
source POI s and destination POI d. To calculate the rele-
vancy score of any POI pi in Q, we consider a hypothetical
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three length route (r1 = s, r2 = pi, r3 = d). We define the
relevancy function as follows:

relevancy(pi) =
1

2
(Pf (xi,2|s, d) + Pb(xi,2|s, d)) (3)

Where the definition of Pf (xi,2|s, d) and Pb(xi,2|s, d) is
given in Equations (1) and (2) respectively. This relevancy
function provides higher scores to POIs which are more
relevant in the context of the query source and destination
POIs. Based on the relevancy function, we obtain a prominent
POI, p(p), the POI with the maximum relevancy score.

Note that the calculated relevancy score is not used
to determine the POI’s final position in the recommended
itinerary. It essentially denotes how likely it is that pi would
be present in an itinerary adopted by a user while travelling
from s to d. Our rationale is that if pi frequently appears
in any position between s and d in the historical trajectories
then the LSTM model learns that pi has high probability to
be between s and d regardless of the route length. Thus,
it would increase the probability of pi appearing between
s and d in the 3 length route (s, pi, d) as well. Also, we
decide to take the average of the forward and backward
probabilities because in the 3 length route, the length of
forward and backward partial route from s to d are equal
and, thus, should be given equal importance.

4.2.2 Generating a Single Itinerary
After obtaining a prominent POI, we generate an itinerary
containing that prominent POI. DeepAltTrip uses the for-
ward and backward LSTM models of ITRNet to generate
the partial itinerary from the prominent POI to the source
POI and the partial itinerary from the prominent POI to the
destination POI. We call the partial itinerary from the source
POI to the prominent POI the first half itinerary and the
partial itinerary from the prominent POI to the destination
POI the second half itinerary.

We generate the half itineraries starting from the promi-
nent POI p(p), as it helps the corresponding LSTM to give
output probabilities with the knowledge that the prominent
POI is present in the itinerary being generated.

There are two ways to develop the full itinerary through
generating the first and second half itineraries starting from
the prominent POI:

• Generate the first half itinerary in reverse order using
the backward LSTM model of ITRNet. Then given the
first half itinerary as partial sequence, generate the
second half itinerary using the forward LSTM model.

• Generate the second half itinerary using the forward
LSTM model. Then given the second half itinerary as
a partial sequence, generate the first half itinerary in
reverse order using the backward LSTM model.

Note that in all cases the source and destination POI
input to the LSTM models are the query source and des-
tination POIs s and d, respectively. We assume a maximum
allowable length of a half itinerary Lmax. To obtain the
first half itinerary (following the first way), we use the
backward LSTM of ITRNet. We place the prominent POI
at position Lmax and generate POI probabilities Pb(xt|s, d)
for positions Lmax − 1 to 1. We determine the position of
the source POI in the reverse first half itinerary as:

ts = argmax
1≤t≤Lmax−1

Pb(xs,t|s, d)

We place the source POI in position ts. For all other positions
from Lmax − 1 down to ts we choose the POI rt in the
sequence through:

rt = argmax
pi

Pb(xi,t|s, d)

Note that during this choice we avoid selection of a POI
which is already in the partial sequence generated to avoid
loops in the recommended itinerary. We also avoid selection
of the given source and destination POIs too. Finally we
adopt the partial itinerary sequence from position ts to Lmax

as our first half itinerary.
After generating the first half itinerary, we generate the

second half itinerary from position Lmax+1 to 2Lmax given
the first half itinerary, source POI s and destination POI
d. We determine the position of the destination POI in the
second half itinerary as:

td = argmax
Lmax+1≤t≤2Lmax

Pf (xd,t|s, d)

We place the destination POI at td. For all other positions
from Lmax + 1 to td we choose the POI rt in the sequence
using the forward LSTM model through:

rt = argmax
pi

Pf (xi,t|s, d)

Finally we put d at position td. The partial itinerary se-
quence from Lmax + 1 to td make up our second half
itinerary. Thus the first and second half itineraries make up
our desired itinerary from POI s to d through the given
prominent POI p(p).

Similarly we can generate the itinerary using the second
way as mentioned above. We place the prominent POI p(p)

at position Lmax. Among the two generated itineraries, we
choose the one with the lowest perplexity or negative log
likelihood, calculated using the forward LSTM model:

perplexity(I) = −
|I|∑
i=1

logPf (xri,i|s, d) (4)

where I is the itinerary (r1, r2, · · · , r|I|) of length |I| with
r1 = s and r|I| = d.

4.2.3 Generating k Alternative Itineraries
To obtain k alternative itineraries as specified in a given
query q(s, d, k), we generate itineraries iteratively through
determining a prominent POI at each iteration. We keep
track of the total number of occurrences for all POIs in the
itineraries generated until the current iteration. Let O[pi] be
the number of occurrences of POI pi in all the itineraries
generated up to the current iteration. At each iteration
j, we obtain the set of POIs with minimum occurrence
Omin = {pi|O[pi] = minpi O[Pi]}. Then we obtain the
prominent POI p(p) at any iteration as:

p(p) = argmax
pi∈Omin

relevancy(pi) (5)

We then take p(p) and generate an itinerary as described
in Section 4.2.2 using p(p) as the prominent POI. After
obtaining an itinerary we update the values of O[pi] for each
pi in the itinerary obtained in this iteration.

We run the same process k times and obtain our desired
k itineraries. An overview of the whole DeepAltTripsystem
is given in Algorithm 1.
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Algorithm 1: DeepAltTrip

1 set O[pi] = 0 for every pi ∈ Q
2 I ← ∅
3 for i = 1, . . . , k do
4 p(p) ← obtain prominent POI using Equation 5
5 Ii ← generate itinerary passing through p(p)

6 I ← I ∪ Ii
7 set O[pi] = O[pi] + 1 for every pi ∈ Ii
8 end
9 Return I

4.3 Generating k Itineraries Using Sampling
In a real-world scenario, a user may want to impose some
constraints on the generated alternative itineraries, such as
setting a fixed budget or time limit, or specifying must-see
POIs, etc. It is not possible to support such constraints in our
proposed LSTM based trip generation technique described
in Section 4.2.2. To overcome such limitations, in this section,
we propose an alternate sampling algorithm to generate an
itinerary starting from p(s), passing through the prominent
POI p(p), and ending at p(d). Our sampling based approach
is as follows.

We iteratively generate candidate itineraries. At itera-
tion 0 of the sampling method, we start with an initial
itinerary R(0) = (r01 = s, r02 = p(p), r03 = d). Note that,
we can start from any initial itinerary which starts and
ends with the source and destination POIs respectively,
and contains the prominent POI within it. A better initial
itinerary may lead to better results, which can be a scope
of a future work. In the iteration process, at iteration j,
suppose we have itinerary R(j) = (r

(j)
1 , r

(j)
2 , ..., r

(j)
|I|j

) of
length |I|j . We generate a sample at iteration j + 1, i.e.,

R(j+1) = (r
(j+1)
1 , r

(j+1)
2 , ..., r

(j+1)
|I|j+1

) of length |I|j+1 by mod-

ifying sample R(j).
For modification, we randomly select a POI at position

t of the itinerary R(j), where 2 ≤ t ≤ |I|j − 1. Then we
perform one of the following four operations at t, namely at
POI r(j)t of itinerary R(j):

Insertion: We first assign r
(j+1)
t = r

(j)
t . We then insert

a POI between t and t + 1. We now define the following
conditional probability distribution using the ITRNet:

Pc(xi,t|p(s), p(d)) = P (xi,t|r1:t−1, rt+1:T , p
(s), p(d))

The above equation gives us the probability of a POI at
a given position given both the partial sequence from the
source POI to the POI before pi at position t − 1 and the
partial sequence starting after pi from position t + 1 to the
destination POI at position T . We can compute this for all
POIs in Q, which can be denoted as an N dimensional
vector Pc(xt|p(s), p(d)). We compute Pc(xt|p(s), p(d)) as fol-
lows:

Pc(xt|p(s), p(d)) = β ∗Pf (xt|p(s), p(d))
+ (1− β) ∗Pb(xt|p(s), p(d)) (6)

where, β = t
T−1 . Intuitively, we give more weights to the

model that has seen a longer sub-route and thus have a
greater contextual information.

We obtain Pc(xt+1|s, d) at position t + 1, where the
newly inserted POI is located in the itinerary. Note that
to avoid the selection of a POI already in the itinerary or
the source or the destination POI, we set their probability
values in Pc(xt+1|s, d) to 0. This helps us to avoid loops
in the itinerary. We sample a POI from Pc(xt+1|s, d) and
assign the obtained sample as r(j+1)

t+1 . The rest of the itinerary
remains unchanged.

Deletion: We delete r
(j)
t at position t of the itinerary and

keep the rest of the itinerary unchanged.
Replacement: We obtain the conditional probability distri-

bution Pc(xt|p(s), p(d)) as in Equation 6 using the ITRNet.
We then take a sample from this distribution to obtain a POI
pr and get r(j+1)

t = pr replacing POI r(j)t . Again as in the
insertion operation, we avoid the selection of a POI already
in the itinerary or the source or the destination POI.

Swap and Replace: We randomly select a position trand,

between 2 to |I|j − 1, and swap the position of POI r(j)t at

position t and POI r(j)trand
at position trand. If r(j)trand

is not a
prominent POI, we also perform the Replacement operation
(as described in the previous paragraph) at position t after
the swap.

To perform an operation at any iteration j, we choose
any one of the operations with equal probability assigned
to all allowed operations. If the selected POI r

(j)
t is the

prominent POI, we do not perform the deletion or re-
placement operation on that POI. Also, to avoid loops, we
omit inserting or putting through replacement a POI that is
already present in R(j) except for POI r(j)t .

At each iteration we check the following two conditions:

• All the pre-defined user constraints are satisfied (if any)
• The perplexity of R(j+1) as defined in Equation 4 is

lower than itinerary R(j) at iteration j, or no new
itinerary has been accepted for previous two iterations.

If both conditions are satisfied, we adopt itinerary R(j+1) for
generating itinerary at iteration j + 2. Otherwise we retain
itinerary R(j) and use this to generate itinerary at iteration
j + 2, meaning we reject the modification operation per-
formed at iteration j+1. The sampling runs for J iterations.
The itinerary generated and accepted with the minimum
perplexity is returned as the desired itinerary. Note that
if any user defined constrains is given, we have to first
build an initial itinerary satisfying all the given constraints.
Any such itinerary that satisfies all the conditions given will
suffice as the initial itinerary.

4.3.1 Satisfying User Constraints

Our sampling algorithm makes it possible to generate al-
ternative itineraries that can satisfy a variety of user con-
straints. Examples include:

• A given fixed budget: If the cost from visiting one POI
to another is given, users may want itineraries that
they can visit within a fixed budget. We may omit
a candidate itinerary generated at an iteration if the
itinerary exceed the budget.

• Must see POIs: Users may want itineraries that must
include one or more specific given POIs. In such cases,
we keep those POIs in the initial sequence and treat
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them similar to the prominent POI, i.e., we don’t delete
or replace those POIs.

• Time constraints for POIs and Itineraries: Many times POIs
have opening and closing hours. Given a start time
along with the source and destination POIs, the average
staying time in a POI and average travel times between
POIs, we can check whether all the constraints are met
while generating itineraries in different iterations. We
can also consider only those POIs during sampling in
insertion or replacement that would satisfy the time
constraints. Also users may want itineraries that they
can travel within a fixed time limit. This can be also
satisfied, where we omit itineraries generated in an
itinerary when the time budget is not satisfied.

Note that the aforementioned constraints cannot be trivially
satisfied in a traditional deep learning algorithm. Thus the
itinerary generation technique of DeepAltTrip-Samp is effec-
tive in many practical scenarios for generating itineraries in
a constraint setting.

4.4 An Illustrative Example

In this section we provide an illustrative example to show
the different steps of our DeepAltTrip algorithm. We con-
sider the scenario shown in Figure 1 as our running exam-
ple. Here s, P1 through P9 and d are the POIs. The user
wants to go from POI s to POI d, where she wants to see 2
(k = 2) alternate itineraries from s to d.

In DeepAltTrip, first we calculate the relevancy scores of
all the POIs P1 through P9. The scores are computed using
Eq. (3). For the sake of this example, assume that the top-
3 POIs in descending order of relevancy scores are P5, P1

and P4. This order is based on the number of itineraries
passing through each POI in Figure 1 (with ties broken
arbitrarily). This assumption is not unrealistic because our
ITRNet model is trained to give higher probability score to
POIs that are present in more itineraries. In the first iteration
on line 3 of Algorithm 1, we obtain the POI with the highest
relevancy score (P5) and consider it as the prominent POI.

Now, we generate an itinerary from s to d passing
through the prominent POI P5, either directly using the
ITRNet in DeepAltTrip-LSTM or the sampling algorithm
in DeepAltTrip-Samp. Let the resulting itinerary be (s,P1,
P2,P3,P5,d). We increment the number of occurrences of P1,
P2, P3 and P5 as they appear in the first generated itinerary.

In the second iteration of the algorithm, the least oc-
curring POIs now are {P4,P6,P7,P8,P9}. Among these, we
pick the POI with the highest relevancy score (i.e., P4). The
intuition is to pick a prominent POI that has not appeared in
previously generated itineraries, thus, the newly generated
itinerary is likely to be more diverse. Now we generate an
itinerary from s to d passing through P4. Let the generated
itinerary be (s,P1,P4,P8,d). Therefore, the algorithm returns
two itineraries (s, P1, P2, P3, P5, d) and (s, P1, P4, P8, d).

5 EXPERIMENTS

In this section, we present the experimental evaluations
for DeepAltTrip to recommend k alternative itineraries for a
given source and destination POI. In particular, depending
upon the itinerary generation strategy we have two versions

of DeepAltTrip: (i) DeepAltTrip-LSTM that uses LSTMs for
generating an itinerary (Section 4.2.2), and (ii) DeepAltTrip-
Samp that adopts a sampling based flexible approach for
generating an itinerary (Section 4.3).

5.1 Baselines

We are the first to learn alternative itineraries from historical
routes. As there are no prior works in the literature that
directly solves our problem, we adapt two state-of-the-art
trip recommendation techniques that learn from histori-
cal routes, and modify them to recommend k alternative
itineraries. Our two baselines are as follows.

Markov+DBS: We extend the Rank+Markov of [2] to gen-
erate k alternative itineraries. We first compute score ranks
for POIs based on their features for a given query. Then
a POI-to-POI transition matrix is computed from feature-
to-feature transition probabilities. From the computed POI
scores and transition probabilities, we use Viterbi algorithm
to generate a route of a specific length for a given source
and destination. We incorporate the diversified beam search
measure given by [36] to maintain k paths at each step of
the algorithm.

At each step of the Viterbi algorithm, we keep B1 paths
instead of just a single path. Then, from each path, we pick
B2 most probable POIs for the next step. Now of the B1∗B2

paths, we keep the B1 paths with the most probability.
Finally, at the last step, we pick k itineraries from the B1

paths. We pick paths which have the highest probability
ending at the destination POI. During the selection, we
omit paths which have a diversity score less than a certain
threshold (which we call the eligibility threshold) with the
previously adopted itineraries. This is done to increase the
diversity of the recommended itineraries. If there are less
than k itineraries that satisfy the threshold, we begin to
include the omitted itineraries starting from the highest
probability, until we have k itineraries. The probabilities are
calculated as per the Viterbi algorithm. However, the score
matrix is three dimensional, where we store the probabilities
of transition from each POI to another POI at each step.
For our purposes, B1 is set to 10, B2 is set to 20, and the
eligibility threshold is set to 0.2. The penalty threshold of
the diversified beam search λ is set to 0.5.

NASR+DBS: We adopt NASR [4] which uses self-
attention-based LSTM to estimate the conditional probabil-
ity (similar to our forward LSTM model). Again we run
the diversified beam search [36] on top of this model. The
setting of the diversified beam search is similar to the setting
described in the Markov+DBS algorithm. The probability of
an itinerary is the sum of the probabilities of the POIs of
the itineraries at each step, which are calculated using the
attention network. As we do not consider the timestamps
and user personalization here, we drop the time embed-
dings and the user embeddings of the original network. The
rest of the network is the same as decribed in [4]. We return
the top k itineraries with the highest probability scores.

We evaluate the effect of a number of parameters. Specif-
ically, the no. of alternative itineraries recommended, k, is
varied from 1 to 5 with a default value of 3. Also to ensure
fair comparison, we fix the length L of each itinerary (i.e.,
number of POIs in it including s and d) recommended by
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different algorithms. L is varied from 3 to 9 with the default
value being 5. We use a 5-fold cross validation: one fold is
kept for testing and the other four folds are used to train
a model. The average performance metrics among all five
folds are reported.

5.2 Datasets

We use eight popular real-world datasets drawn from two
different domains. As a first group of datasets, we take
geo-tagged Flickr traces of three touristic cities: Edinburgh,
Toronto and Melbourne [1], [2]. In the second group of
datasets, we consider trips of five different theme parks:
California Adventure, Hollywood, Disneyland, Disney Ep-
cot and Magic Kingdom [17].

Along with the trips involving different POIs, the
datasets also contain location ⟨lat, long⟩ and the category
of each POI. The trajectories given in these datasets are gen-
erated from user check-ins, with the visiting time between
two consecutive POIs in a trajectory is no more than 8 hours.
We filter out multiple occurrences of POIs (if any) from these
trajectories to avoid loops. We also only consider trajectories
having at least three POIs. Table 2 shows the details of each
dataset including the number of POIs, number of routes
having at least three POIs and the number of ground truth
set of routes generated with unique (s, d) pairs.

Place # POIs # routes unique (s, d) pairs
Edinburgh 28 634 267
Toronto 29 335 163
Melbourne 88 442 373
California Adventure 25 1475 404
Hollywood 13 901 134
Disneyland 31 2792 618
Disney Epcot 17 1248 207
Magic Kingdom 27 2218 508

TABLE 2: Dataset Statistics

5.3 Evaluation Metrics

Given a query q(s, d, k), we use SREC to denote the set
of k recommended itineraries by an algorithm and Sgr to
denote the ground truth routes which consists of all the
historical routes that start at s and end at d. Next, we
describe the metrics that we use to measure the quality
of itineraries SREC returned by an algorithm. In particular,
we measure the quality of our alternate itineraries by using
traditional popularity and diversity metrics independently
as well as by another metric that considers both popularity
and diversity at the same time.

5.3.1 Popularity
We use the widely used F1 score and pairs-F1 score [1],
[2] to measure the popularity pop(SREC) of a set of k
recommended itineraries SREC .

Suppose, route R = (r1, r2, r3, ..., r|R|) is a ground
truth route where r1 = s and r|R| = d and itinerary
I = (i1, i2, ..., i|I|) is a recommended itinerary. Also, let
QR and QI be the sets of POIs in the ground truth route
and recommended itinerary respectively. The precision of
the recommended itinerary |I| is calculated as:P = |QR∩QI |

|QI |

and the recall is calculated as R = |QR∩QI |
|QR| . The F1 score is

the harmonic mean of precision and recall, i.e. F1 = 2PR
P+R .

In contrast to F1, pairs-F1 score considers orders of POIs
in the routes. Specifically, precision is the no. of ordered POI
pairs present in both R and I divided by the total no. of
ordered POI pairs in I . The recall is the total no. of ordered
POI pairs present in both R and I divided by the total
number of ordered POI pairs in R. The pairs-F1 score is
the harmonic mean of this precision and recall.

We compute F1 score (resp. pairs-F1 score) for each pair
in SREC×Sgr and report the average value as the popularity
of the recommended itinerary set SREC . The popularity
scores indicate the average quality of the individual rec-
ommended itineraries with respect to the historical trips
adopted by past users. Note that the F1 or pairs-F1 scores
are always between 0 and 1.

5.3.2 Diversity
We adapt the diversity metric used in [31], originally de-
fined to measure the diversity among POIs in a set. To
measure the diversity of a set of itineraries SREC containing
k itineraries, we first measure a similarity value sim(Ii, Ij)
for a pair of itineraries Ii and Ij . Although any similarity
function can be used, in our experiments, we adopt the
F1 score between a pair of itineraries as the similarity
measurement, ignoring the source and destination POIs.

We then define the diversity value of a recommended set
of itineraries SREC = {I1, I2, · · · , Ik} of size k as

div(SREC) =
1

k(k − 1)

∑
(Ii,Ij)∈SREC×SREC

i ̸=j

(1− sim(Ii, Ij))

(7)
In Equation 7, we calculate the average diversity be-

tween all k(k − 1) pairs in the recommended itinerary set
SREC . For each pair, the diversity value is the dissimilarity
value between the two itineraries, i.e., 1 − sim(Ii, Ij). As
long as the similarity measure sim(Ii, Ij) is between 0 to
1, the dissimilarity measure and thus div(SREC) will also
remain between 0 to 1, with higher value indicating higher
diversity between the recommended itineraries.

Also observe that, the notion of popularity and diversity
is somewhat conflicting. For example, suppose a model is
to recommend 2 alternative itineraries. If the model recom-
mends the most popular itinerary 2 times, it will achieve
the maximum average popularity score, but the diversity
score of the recommended itinerary set would be 0. If it at-
tempts to diverse from this most popular itinerary, it would
achieve the diversity score. But unless it can align with
an alternatively popular itinerary, the popularity measure
of this second recommended itinerary will be low and the
average popularity score will drop. Thus to achieve higher
popularity and diversity scores at the same time, a model
must recommend quality alternative itineraries with respect
to the historical trips.

5.3.3 Combination of Popularity and Diversity
Since our goal is to recommend quality alternative
itineraries that are both popular and diverse, we need
a measure that combines the popularity and diversity of
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Edinburgh Toronto Melbourne CaliAdv.
Method F1 Pairs-F1 Div. F1 Pairs-F1 Div. F1 Pairs-F1 Div. F1 Pairs-F1 Div.

Markov+DBS 0.592 0.287 0.534 0.597 0.284 0.461 0.500 0.186 0.564 0.527 0.216 0.478
NASR+DBS 0.576 0.268 0.643 0.583 0.267 0.666 0.497 0.181 0.722 0.541 0.229 0.576

DeepAltTrip-LSTM 0.580 0.272 0.766 0.589 0.280 0.755 0.521 0.207 0.791 0.531 0.221 0.771
DeepAltTrip-Samp 0.577 0.270 0.724 0.594 0.286 0.665 0.512 0.198 0.814 0.526 0.214 0.766

(a)

DisHolly Disland Epcot MagicK
Method F1 Pairs-F1 Div. F1 Pairs-F1 Div. F1 Pairs-F1 Div. F1 Pairs-F1 Div.

Markov+DBS 0.607 0.297 0.343 0.513 0.203 0.383 0.585 0.279 0.425 0.512 0.205 0.394
NASR+DBS 0.631 0.329 0.478 0.533 0.222 0.497 0.604 0.298 0.422 0.525 0.215 0.525

DeepAltTrip-LSTM 0.623 0.319 0.572 0.515 0.206 0.733 0.585 0.280 0.741 0.515 0.205 0.761
DeepAltTrip-Samp 0.615 0.315 0.668 0.506 0.197 0.796 0.582 0.276 0.704 0.509 0.203 0.761

(b)

TABLE 3: Comparison w.r.t. F1, Pairs-F1 and Diversity Scores

SREC . We employ the widely used weighted sum to define
the combined metric as

comb(SREC) = α× pop(SREC) + (1− α)× div(SREC)

where pop(SREC) is the average popularity score of the
recommended itineraries which is computed using the F1
score as discussed earlier in Section 5.3.1. The parameter
α ∈ [0, 1] specifies the relative importance of popularity and
diversity.For example, α < 0.1 gives very little importance
to the popularity of the itineraries, and α > 0.9 provides
very little importance to the diversity of the itineraries. Thus
we consider 0.1 ≤ α ≤ 0.9 during our evaluation. To give
equal importance to both popularity and diversity, we set
α = 0.5 as a default value.

It is important to note that our proposed approaches,
both DeepAltTrip-LSTM and DeepAltTrip-Samp are agnostic
to the above metrics, and our motivation is to learn popular
alternative routes without any such explicit modeling of
popularity and/or diversity. Yet, we show that that our
proposed learning-based approaches outperform baselines
significantly w.r.t. these traditional metrics.

5.4 Hyperparameter Tuning

We now describe the hyperparameter values used in
DeepAltTrip-LSTM and DeepAltTrip-Samp. The values of the
key hyperparameters are shown in Table 6. Recall that
our algorithm first obtains POI graph embeddings through
two separate graph autoencoders. It then trains two LSTM
models. Finally separate itineraries are generated through
k different prominent POIs, through the use of either an
LSTM based technique (DeepAltTrip-LSTM) or a sampling
based technique (DeepAltTrip-Samp).

Graph Autoencoders and ITRNet: For the graph au-
toencoder, the embedding dimensions ZC and ZD were
12 and 24, respectively. The autoencoders were trained
with learning rate of 0.05 and 0.01 respectively, using the
Adam optimizer. The autoencoders were trained for 5000
and 20000 epochs respectively. The hidden layer size for
both the forward and backward LSTM models was 32. The
dimension of the MLP layer was 30. Here, the learning
rate was set 0.001 for the whole model, using the Adam
optimizer as before. Both the LSTM models were trained
with a batch size of 32. Both the forward and backward
LSTM were trained for 300 epochs. We show the impact

of tuning the hidden layer size from 16 to 256 in Both
Edinburgh dataset in Table 5. We show the average F1 and
diversity scores for each layer size. We observe that a layer
size of 32 provides the best results in terms of average F1
score, and increasing the size does not result in further
improvement, rather unnecessarily increases the training
time. Thus we selected a hidden layer size of 32.

DeepAltTrip-LSTM: To generate fixed length itineraries
containing L POIs, we first generate the half itinerary as
prescribed in the algorithm setting Lmax to L− 1, and then
the other half itinerary is generated such that the length of
the total itinerary is L. Also Lmax is set to the length of the
longest itinerary found in the training dataset.

DeepAltTrip-Samp: We start with an initial itinerary
consisting of L POIs by placing the intermediate prominent
POI at a random position between 2 to L − 1. We ignore
the insert and delete operations here as those operations
would change the length. Replacement or Swap and Replace
operations are performed each with probability 0.5. For
prominent POI, we do not use replace operation and only
apply Swap and Replace operation with probability 0.5. The
sampling algorithm is run for 5(L−2) iterations in total. This
ensures that when the search space is larger (i.e., larger L),
the algorithm runs more iterations to achieve good quality.

5.5 Performance Comparison

We now discuss performance in terms of the evaluation met-
rics considered. We first consider the average popularity and
diversity of the recommended itineraries independently,
after that we consider the combined score to assess the
performance of the system to return multiple alternative
itineraries. Next we evaluate the effect on performance if
we vary the length of the recommended itineraries and
also if we vary the no. of itineraries to be recommended.
We also compare the running times of the variations of
DeepAltTrip and also compare them with the baselines.

5.5.1 Considering Popularity and Diversity Independently

Table 3 shows the popularity (using both F1 score and pairs-
F1 score) and the diversity of the itineraries recommended
by each approach. We see that the average F1 and pairs-
F1 scores of both of our approaches are similar to those of
the competitors which are the state-of-the-art for returning
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F1 Diversity Comb (α = 0.5)
L 3 5 7 9 3 5 7 9 3 5 7 9

Markov+DBS 0.631 0.592 0.542 0.503 1.000 0.534 0.240 0.130 0.816 0.563 0.391 0.316
NASR+DBS 0.632 0.576 0.525 0.480 1.000 0.643 0.408 0.232 0.816 0.610 0.467 0.356

DeepAltTrip-LSTM 0.644 0.580 0.521 0.480 1.000 0.766 0.632 0.548 0.822 0.673 0.576 0.514
DeepAltTrip-Samp 0.644 0.577 0.521 0.476 1.000 0.724 0.592 0.482 0.822 0.651 0.556 0.479

(a) Edinburgh Dataset

F1 Diversity Comb (α = 0.5)
L 3 5 7 9 3 5 7 9 3 5 7 9

Markov+DBS 0.611 0.585 0.553 0.524 1.000 0.425 0.190 0.103 0.805 0.505 0.372 0.313
NASR+DBS 0.624 0.604 0.565 0.528 1.000 0.422 0.248 0.173 0.812 0.513 0.406 0.350

DeepAltTrip-LSTM 0.621 0.585 0.545 0.510 1.000 0.741 0.621 0.508 0.810 0.663 0.583 0.509
DeepAltTrip-Samp 0.622 0.582 0.537 0.507 1.000 0.704 0.590 0.467 0.811 0.643 0.564 0.487

(b) Epcot Dataset

TABLE 4: Comparison with Varying Length of Recommended Itineraries

F1 Diversity
Ł 3 5 7 9 3 5 7 9
16 0.658 0.613 0.546 0.495 1.000 0.574 0.484 0.410
32 0.662 0.600 0.536 0.486 1.000 0.766 0.632 0.548
64 0.656 0.587 0.527 0.479 1.000 0.784 0.638 0.545
128 0.648 0.580 0.522 0.478 1.000 0.770 0.616 0.541
256 0.646 0.585 0.521 0.471 1.000 0.766 0.641 0.540

TABLE 5: Varying LSTM Hidden Layer (Edinburgh Dataset)

Hyperparameter Name Value
Category Embedding 12
Distance Embedding 24
Category GAE Learning rate 0.05
Distance GAE Learning rate 0.01
Hidden layer size of LSTM models 32
Dimension of MLP layer 30
Learning rate of LSTM models 0.001

TABLE 6: Values of key hyperparameters of ITRNet

most popular itineraries. On the other hand, the average di-
versity of the recommended itineraries provided by our ap-
proaches far exceed those of the competitors in all datasets.
For example in the Edinburgh dataset, DeepAltTrip-LSTM
and DeepAltTrip-Samp provide 19.13% and 12.60% higher
average diversity, respectively, than the nearest competing
baseline. This shows that our approaches provide much
more diverse itineraries while keeping the popularity of the
recommended itineraries on par with the other baselines. In
other words, these baselines primarily focus on popularity,
and the competitive F1 and pairs-F1 scores show that our
approaches generate diverse itineraries without compromis-
ing on the popularity of the recommended itineraries, thus
providing quality alternative itineraries.

5.5.2 Combined Popularity and Diversity Score
We vary α in the combined metric from 0.1 to 0.9 and
show the results for each value in Table 7. Due to space
constraints, we only present the results for two datasets, one
from each group. Results on the other datasets show similar
trends. Again the length of the recommended itineraries is
set to 3 and the no. of itineraries recommended is set to 5.
The scores of the combined metric is shown in Table 7.

We observe that both variants of DeepAltTrip outperform
the competitors even when α is set to 0.9, i.e., the popularity
is given a much higher importance than diversity. When
both are given equal importance i.e., α = 0.5, we see that in
the Epcot dataset DeepAltTrip-LSTM and DeepAltTrip-Samp

α
0.1 0.3 0.5 0.7 0.9

Markov+DBS 0.540 0.552 0.563 0.575 0.586
NASR+DBS 0.637 0.624 0.610 0.596 0.583

DeepAltTrip-LSTM 0.747 0.710 0.673 0.636 0.598
DeepAltTrip-Samp 0.710 0.680 0.651 0.621 0.592

(a) Edinburgh Dataset

α
0.1 0.3 0.5 0.7 0.9

Markov+DBS 0.441 0.473 0.505 0.537 0.569
NASR+DBS 0.440 0.477 0.513 0.549 0.586

DeepAltTrip-LSTM 0.726 0.694 0.663 0.632 0.601
DeepAltTrip-Samp 0.692 0.668 0.643 0.619 0.594

(b) Epcot Dataset

TABLE 7: Comparison with Combined Metric

outperform the nearest competing baseline by 29.24% and
25.34%, respectively.

5.5.3 Effect of Varying Length of Recommended Itineraries
We vary the length L of the recommended itineraries as 3,
5, 7, and 9. Table 4 shows the results. We show the results
for the Edinburgh and Epcot datasets (other datasets also
follow similar trend). Note that, for all values of L, the
average F1 and pairs-F1 score remain similar to those of
the competitors that primarily focus on providing popular
itineraries. However, the diversity of the recommended
itineraries by DeepAltTrip-LSTM and DeepAltTrip-Samp are
significantly higher than these competitors.

We observe that, as the value of L increases, both
DeepAltTrip-LSTM and DeepAltTrip-Samp outperform the
nearest competing baseline by a greater margin. For exam-
ple, for the Edinburgh dataset, DeepAltTrip-LSTM provides
19.13% increase in diversity and 10.33% increase in the com-
bined score for L = 5, whereas it provides a 136% increase
in diversity and a 44.38% increase in the combined score
for L = 9. Similarly, for DeepAltTrip-Samp in the Edinburgh
dataset, we see a 12.60% increase in diversity and 6.72%
increase in the combined score for L = 5, whereas a 107%
increase in diversity and 34.55% increase in the combined
score for L = 9. This is primarily because the average
diversity provided by the baselines significantly drops for
larger L. Note that, when itinerary length is 3 (including
s and d), diversity for each approach is maximum (i.e., 1)
which is because the only intermediate POI in each itinerary
is different from the other recommended itineraries.
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F1 Score Diversity Comb (α = 0.5)
k 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Markov+DBS 0.600 0.589 0.592 0.585 0.586 – 0.564 0.534 0.487 0.459 – 0.576 0.563 0.536 0.522
NASR+DBS 0.599 0.585 0.576 0.573 0.574 – 0.626 0.643 0.644 0.639 – 0.605 0.610 0.608 0.606

DeepAltTrip-LSTM 0.608 0.589 0.580 0.572 0.568 – 0.764 0.766 0.774 0.787 – 0.676 0.673 0.673 0.677
DeepAltTrip-Samp 0.587 0.579 0.577 0.571 0.568 – 0.709 0.724 0.737 0.745 – 0.644 0.651 0.654 0.657

(a) Edinburgh Dataset
F1 Score Diversity Comb (α = 0.5)

k 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Markov+DBS 0.593 0.584 0.585 0.582 0.583 – 0.465 0.425 0.378 0.366 – 0.524 0.505 0.480 0.475
NASR+DBS 0.612 0.607 0.604 0.604 0.602 – 0.475 0.422 0.425 0.431 – 0.541 0.513 0.515 0.516

DeepAltTrip-LSTM 0.594 0.591 0.585 0.581 0.575 – 0.714 0.741 0.754 0.765 – 0.652 0.663 0.668 0.670
DeepAltTrip-Samp 0.591 0.592 0.582 0.573 0.570 – 0.688 0.704 0.733 0.737 – 0.640 0.643 0.653 0.653

(b) Epcot Dataset

TABLE 8: Effect of Varying The No. of Itineraries Generated (k)

5.5.4 Effect of k
Here we set the length of itineraries recommended, L to
5. Again we show the results in two datasets for space
constraints, taking one each from the two different domains
(see Table 8). Other datasets show similar trends.

Our proposed approaches consistently achieve higher
diversity even for larger k. The average F1 score of the rec-
ommended itineraries slightly drop for all approaches, how-
ever, our approaches are comparable to the baselines. Con-
sequently, we see that both DeepAltTrip-LSTM and DeepAlt-
Trip-Samp provide significantly higher combined scores. For
example, in the Edinburgh dataset, DeepAltTrip-LSTM pro-
vides 11.74% , 10.32%, 10.69% and 11.72% higher combined
score with α = 0.5 for k = 2, 3, 4 and 5, respectively. Also
DeepAltTrip-Samp provides 9.53%, 6.72%, 7.57% and 8.42%
higher combined scores for k = 2, 3, 4 and 5, respectively.

5.5.5 Performance Against Inference Model
We also test the effectiveness of the proposed learning based
model against a traditional inference-only solution. As there
is no predefined objective function, it is not straightfor-
ward to design an inference-only solution. We design an
inference-only solution as follows. We first perform an A*
search based on POI distances, and then incorporate diver-
sified beam search [36] on top of it.

We keep a path if its diversity score is greater than a
specified threshold τ . We report the top k paths out of the
B paths (obtained by beam search). We set the beam width
B to 4k and τ is set to 0.2 similar to the competitors.

Our DeepAltTrip-LSTM model outperforms this
inference-only approach by 2.63% on the F1 score, 4.44% on
the diversity score and 4.04% on the combined score with
α = 0.5 when tested on all eight dataset with k = 3 and
N = 5. This indicates the impact of learning in producing
quality alternative itineraries.

5.5.6 Performance Under User Constraints
To illustrate the performance of DeepAltTrip-LSTM and
DeepAltTrip-Samp under user constraints, we perform the
experiment of providing k alternative itineraries, where
each itinerary must be within a budget limit.

Setup: We first set a cost between 1 to 100 for each POI
to POI transition in a dataset. The cost of an itinerary is thus
the sum of the cost of all the POI transitions in the itinerary.
Now for each source to destination query, we need a budget
limit. It is assigned as the maximum of the cost of all the
routes in the ground truth dataset (we assume this is the
user provided budget limit).

We evaluate the recommended itineraries using the F1
score and the diversity score of the generated itineraries.
Now, the algorithms would not be able to find k itineraries
that would all satisfy the budget constraints. If there are
q queries, we define a success ratio of an algorithm such
as T

k∗q where T is the total no. of itineraries recommended
across q queries. Ideally if the algorithm is able to find k
itineraries that satisfy the constraint for all q queries, the
success ratio will be 1. Higher success ratio means that the
algorithm is better suited to provide itineraries satisfying the
user constraints. The F1 and diversity scores are calculated
using only the itineraries found by the algorithm.

Algorithms: We modify the baselines and both
DeepAltTrip-LSTM and DeepAltTrip-Samp so that they
output itineraries satisfying the budget limit. For the
Markov+DBS and NASR+DBS methods, we increase the
beam width to get more itineraries as candidate, and pick
an itinerary only if it satisfies the budget limit.

For DeepAltTrip-LSTM, we increase the value of the no.
of iterations the algorithm runs from k to 2k. We pick an
itinerary only when it satisfies the budget constraint, and
stop when we have found k itineraries.

Finally for DeepAltTrip-Samp, we start with an initial
itinerary of length L, which contains the source and destina-
tion POI in the first and last position respectively. Now from
position 2 to L − 1, we pick the POI which would require
the least cost to transit. After this, we place the prominent
POI in a random position from 2 to L − 1. Now, during
the iteration of the sampling algorithm, we consider the
least cost (instead of perplexity) until we find an itinerary
within the budget limit. Once we find an itinerary within the
budget limit, we find an itinerary with the least perplexity
as usual. Here we also check if the recommended itinerary
is within the budget limit; otherwise we omit it.

Results: The F1 scores, diversity scores and success rate
for Edinburgh and Epcot datasets are given in Table 9.
We observe that, the success rate of the DeepAltTrip-Samp
algorithm is much higher than others, indicating that it is
much better suited to find itineraries satisfying the user
constraint. Also, the F1 scores and diversity scores are also
similar to the others, which indicate that the algorithm
provides quality alternative itineraries.

5.6 Running Time Comparison
5.6.1 Time Complexity Analysis
We first analyze the time complexity of Algorithm 1. Here,
line 1 takes O(P ) time, where P is the no. of POIs con-
sidered. Line 2 takes O(1) time. Line 4 takes O(P ) time. It
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F1 Diversity Success Rate
L 3 5 7 9 3 5 7 9 3 5 7 9

Markov+DBS 0.644 0.594 0.551 0.528 1.000 0.317 0.113 0.033 0.994 0.879 0.550 0.277
NASR+DBS 0.647 0.600 0.562 0.530 1.000 0.347 0.093 0.031 0.975 0.714 0.397 0.195

DeepAltTrip-LSTM 0.664 0.594 0.532 0.503 1.000 0.535 0.248 0.099 0.950 0.711 0.400 0.191
DeepAltTrip-Samp 0.662 0.584 0.512 0.457 1.000 0.630 0.429 0.300 0.950 0.896 0.860 0.828

(a) Edinburgh Dataset

F1 Diversity Success Rate
L 3 5 7 9 3 5 7 9 3 5 7 9

Markov+DBS 0.612 0.576 0.547 0.535 1.000 0.343 0.148 0.065 0.992 0.896 0.676 0.450
NASR+DBS 0.624 0.601 0.566 0.528 1.000 0.319 0.116 0.057 0.986 0.852 0.610 0.391

DeepAltTrip-LSTM 0.628 0.583 0.542 0.513 1.000 0.602 0.391 0.218 0.972 0.826 0.625 0.439
DeepAltTrip-Samp 0.627 0.575 0.528 0.486 1.000 0.661 0.464 0.304 0.972 0.930 0.867 0.787

(b) Epcot Dataset

TABLE 9: Comparison with Fixed Budget Limit

takes O(1) time to calculate the probabilities of POIs in a
particular position of a route using the ITRNet. In line 5, we
have two different variations. First, let us consider the case
of DeepAltTrip-LSTM. Here, generating each half itinerary
takes O(PL) time, as we take the POIs with maximum
probability at each step, and also place a POI at a particular
step (either the prominent or the source/destination POI)
after it. Here L is the maximum allowed length of the
itinerary being generated. Finally it takes O(L) time to
calculate the perplexity of an itinerary. Line 6 takes O(1)
time and line 7 takes O(P ) time. Thus, if DeepAltTrip-LSTM
is used, Algorithm 1 takes O(k ∗ PL) time, where k is the
no. of itineraries being generated.

Now, consider DeepAltTrip-Samp. If we run the sampling
algorithm S times, the runtime to generate a single itinerary
would be O(PS), as it would take O(P ) time to run a
single insertion/replacement/swap and replace operation,
and O(L) time to calculate its perplexity. Now, generally
S > L (we run the sampling algorithm 5(L−2) times). Thus
if we use DeepAltTrip-Samp in our algorithm, Algorithm 1
takes O(k∗SP ) time. In contrast, Markov+DBS baseline runs
in O(BP 2L) time, where B is the beam width. NASR+DBS
baseline runs in O(B ∗ PL) time, as it takes O(PL) time to
generate each itinerary.

5.6.2 Empirical Analysis of Execution Time
We run all the algorithms on a machine with Intel core-
i7 8565U CPU, 16GB RAM. We record the average time
per query (in seconds) for five folds of the dataset, and
report the average time per query. We vary the length of
recommended itineraries, L as 3, 5, 7, and 9 and keep k as
3. As the Melbourne dataset has the maximum no. of POIs
and Disneyland dataset has maximum no. trips, we show
the results for these two datasets to depict the scalability of
the algorithms. The results are shown in Table 10.

We observe that DeepAltTrip-LSTM and NASR+DBS have
similar execution times in both datasets whereas DeepAlt-
Trip-Samp takes more time than the other approaches. The
execution time increases with the increase of L. However, in
practice, L is typically small [12] and this increasing cost is
quite acceptable. We observe that although the Melbourne
dataset has almost three times more POIs than the Disney-
land dataset, the average execution time per query remains
similar for NASR+DBS, DeepAltTrip-LSTM and DeepAltTrip-
Samp. Hence, the running times of these three algorithms

Execution Time (Seconds)
L 3 5 7 9

Markov+DBS 0.700 1.062 1.424 1.860
NASR+DBS 0.060 0.167 0.280 0.413

DeepAltTrip-LSTM 0.093 0.190 0.293 0.411
DeepAltTrip-Samp 0.084 0.491 0.868 1.257

(a) Melbourne Dataset

Execution Time (Seconds)
L 3 5 7 9

Markov+DBS 0.152 0.171 0.204 0.245
NASR+DBS 0.057 0.166 0.286 0.429

DeepAltTrip-LSTM 0.088 0.199 0.303 0.416
DeepAltTrip-Samp 0.074 0.474 0.827 1.173

(b) Disneyland Dataset

TABLE 10: Query Execution Time (Seconds)

are not significantly influenced by the no. of POIs; whereas
the execution time of Markov+DBS increases substantially
as the no. of POIs increase. This is expected as Markov+DBS
runs in time quadratic to the no. of POIs, whereas the other
algorithms considered runs in time linear to the no. of POIs.

6 LIMITATIONS AND FUTURE WORK

We proposed two deep-learning-based approaches that
learn to recommend top-k alternative itineraries for a
given source and destination. Extensive experiments using
real-world datasets show that the DeepAltTrip-LSTM and
DeepAltTrip-Samp outperform the best performing baselines
by up to 29.24% and 25.34%, respectively, for the default set-
tings w.r.t. the combined popularity and diversity measure.
We have identified a number of directions for future work.
First, a limitation of this work is that we enforce diversity
in the final phase that does not involve any learning. It is
an interesting direction to design learning techniques for
this final phase. Second, usage of modern approaches like
Decision Transformers [37] and Transformer Network [38]
should be explored. Also, it will be interesting to incorporate
Nucleus Sampling [39]. Third, incorporating POI visiting
times and user personalization in recommendation is an-
other interesting future research direction.
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