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Eco-friendly navigation (aka eco-routing) finds a route from A to B in a road network that minimizes the greenhouse gas (GHG)
emission or fuel/energy consumption of the traveling vehicle. As road transport is a major contributor to GHG emissions, eco-routing
has received considerable research attention in the past decade, mainly on two research themes: 1) developing models to estimate
emissions or fuel/energy consumption of vehicles; and 2) developing algorithms to find eco-friendly routes for a vehicle. There are
some excellent literature reviews that cover the existing estimation models. However, there is no literature review on eco-friendly
route planning algorithms. This paper fills this gap and provides a systematic literature review in this area. From mainstream online
databases, we obtained 2,494 articles and shortlisted 76 articles using our exclusion criteria. Accordingly, we establish a holistic view
of eco-routing systems and define five taxonomies of estimation models, eco-routing problems and algorithms, vehicle types, traffic,
and road network characteristics. Concerning the taxonomies, we categorize and review the shortlisted articles. Finally, we highlight
research challenges and outline future directions in this important area.
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1 INTRODUCTION

Road transport has contributed significantly to greenhouse gas (GHG) emissions, causing global warming in the past
decades. Reports from various countries show that road transport accounts for 16% to 20% of the total global GHG
emissions [40]. Thus, reducing the GHG emission from road transport has received significant attention from academia
and industries [49, 126, 165, 212]. Among many other initiatives like replacing gasoline-based vehicles with electric
vehicles, intelligent routing strategies that optimize fuel consumption, commonly known as eco-friendly navigation
(aka eco-routing), have shown significant promise in reducing GHG emissions [2]. According to Google, one of the
most popular navigation service providers, the eco-routing service provided by the company in the last year has
the potential to allow users to avoid over 1 million tons of carbon emissions per year [112]. In addition to reducing
carbon emissions, eco-routing has the potential to save millions of dollars by reducing the increased fuel costs of
commuters [196]. Note that fuel consumption is directly proportional to GHG emissions, and we can easily extend the
techniques designed to minimize fuel consumption to minimize GHG emissions, and vice versa [152]. Similarly, energy
consumption directly contributes to GHG emissions for electric vehicles, assuming that the vehicle is charged using
dirty energy sources such as electricity produced using fossil fuels. In this paper, we focus on minimizing fuel/energy
consumption. Note that we can directly apply the existing techniques to minimize emissions by using emission models
instead of fuel/energy consumption models. For simplicity, in the rest of the paper, we use the term “energy consumption”
instead of “fuel/energy consumption”.

Eco-routing finds the most energy-efficient path for a vehicle from a given origin to a given destination. More
specifically, given a road network and the energy consumption costs of every link of the network, the eco-routing
algorithm finds the route (sequence of road network segments) that minimizes the energy consumption for traveling from
the origin to the destination [30]. Thus, an eco-routing system has two major components: (i) an energy consumption
model to estimate the energy consumption for a given road segment/route; and (ii) a routing algorithm that finds the
most energy-efficient route from the origin to the destination.

As the energy consumption of a vehicle traveling on a route depends on various factors that include traffic dynamics
(e.g., average speed, traffic flow, and traffic signaling), road properties (e.g., roadway grade, surface roughness, and
horizontal curvature), vehicle properties (e.g., engine, loading, vehicle speed, and acceleration), driving behaviors, etc.,
the research on the transportation area mainly focuses on developing different energy consumption models utilizing
various aspects of these factors. Though most of the earlier models were based on physics or rules [228], data-driven
models [112, 116] have shown a great promise recently. As vehicle properties play a vital role in the process, different
energy models have been proposed for different types of vehicles, e.g., gasoline vehicles [172], hybrid vehicles [61, 155],
and electric vehicles [39, 96].

Though significant attention has been given to developing appropriate energy consumption models, the proposed
eco-routing approaches adopt a wide variety of routing algorithms for finding the eco-route. The path returned by
eco-routing can be very different from the paths produced by the conventional routing approaches that find the fastest
or shortest route from the origin to the destination [9, 88]. For example, according to a case study [128], on average, the
eco-route takes 9% longer distance to travel than the shortest route. Another study [10] shows that by sacrificing 4.3
minutes of travel time for a longer route for the same origin-destination pair, drivers may save around 18–23% of energy.
Thus, the eco-routing strategy also optimizes energy consumption while imposing travel time/distance constraints
to make the path more practical and convenient for users. Existing eco-routing approaches adopt a wide variety of
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algorithms ranging from optimization algorithms [218] to simple search-based techniques [224] to advanced AI-driven
search techniques [117] under different environments and user-defined constraints.

Eco-routing has received huge research attention in the past decade or so. Most of the existing works can be
categorised in two major themes: 1) developing models to accurately estimate energy consumption of vehicles; and 2)
developing algorithms to find eco-friendly routes. There has been several literature reviews [18, 58, 93, 228] covering
the former. For example, earlier works by Faris et al. [93] and Zhou et al. [228] provide a comprehensive review of
state-of-the-art energy consumption models and classify them into different categories. Chen et al. [58] provide a
review of energy consumption estimation of electric vehicles (EVs) and how to support the improvement of models
and development of emerging EV applications. Although there are also some literature reviews related to eco-routing,
these existing surveys have a different focus than our work. For instance, Almalki et al. [19] present a survey on eco-
friendliness in smart cities, but their primary focus is on the development of Internet of Thing (IoT) techniques. Lin
et al. [140] and Ferreira et al. [95] present comprehensive surveys on minimizing energy consumption in logistics.
However, their focus is primarily on the Vehicle Routing Problem (VRP). Unlike eco-routing, which focuses on finding
eco-friendly routes, VRP focuses on assigning orders to a group of vehicles to minimize a given objective function (such
as driving distance or fuel consumption). These surveys do not address the computation of eco-friendly routes between
a start and a target location, which is the specific focus of this survey. Instead, they concentrate on the assignment of
orders to the vehicles. Alfaseeh et al. [18] focus on a three-factor taxonomy where eco-routing models are classified at
a more disaggregated level. The taxonomy is based on the level of aggregation of traffic flow and emission models,
scalability, and the number of objectives optimized simultaneously. Our survey is unique in that it primarily focuses on
algorithms for finding eco-friendly routes while also covering a variety of taxonomies to classify different works.

Despite a large body of existing works on developing algorithms to find eco-friendly routes, there is no existing
literature review that critically analyses these works. We fill this gap and present a systematic literature review of the
eco-routing algorithms. We present several important and original taxonomies and categorize the existing research
based on different dimensions. We make the following key contributions in this paper.

• We identify major aspects of eco-routing systems, mainly focusing on routing algorithms. We conduct a
systematic literature review of the existing research on eco-routing approaches and critically review the
influential papers collected from well-known research databases.

• We provide five major taxonomies to categorize the existing eco-routing approaches: (i) an energy consumption
model taxonomy to categorize different types of energy consumption estimation strategies; (ii) a taxonomy to
group existing works based on the types of problems studied and the types of algorithms employed to solve the
problems; (iii) a taxonomy to differentiate existing works based on the vehicle types (e.g., electric vehicle or
internal combustion vehicle); (iv) a taxonomy based on the traffic conditions; and (v) a taxonomy to show the
scalability of the proposed approaches.

• We review relevant existing works on eco-routing under two major categories of routing algorithms: uncon-
strained and constrained routing algorithms. We critically analyze each of the works from the perspective of
our defined taxonomies.

• We discuss prominent challenges hindering the research in eco-routing algorithms adapted in different eco-
routing systems and outline important future research directions.

The rest of this paper is organized as follows. Section 2 presents different taxonomies that incorporate the key aspects
of eco-routing approaches. Section 3 explains the state-of-the-art eco-friendly navigation approaches and categorises
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them based on the defined taxonomies. Section 4 highlights the major research challenges and future research directions.
We conclude the paper in Section 5. Furthermore, Section A.1 in the Supplementary Material provides the scope and
structure of this literature review, and Section A.2 presents our methodology for a systematic literature review.

2 TAXONOMIES

The existing literature on eco-routing considers a variety of different aspects important for eco-routing. In this section,
we discuss some of the major aspects and present taxonomies for these aspects. These taxonomies are then used in our
literature review to discuss the existing work. Figure 1 depicts five crucial aspects of eco-routing discussed in this paper.
When categorizing existing literature, it is essential to evaluate each aspect independently. However, these aspects often
intersect and exhibit interdependencies. In Figure 8, we present an overview of the eco-routing system, illustrating
how each aspect interacts with the others. For example, energy consumption models rely on vehicle parameters, traffic
information, and road network characteristics. Similarly, road network characteristics, such as travel time, are influenced
by traffic data. It is important to note that these aspects offer different frameworks for classifying existing works, and
these classification methods may not always be directly comparable. Different readers may prefer classifications based
on specific taxonomies depending on their interests and preferences. For example, a reader primarily interested in
energy consumption models in eco-routing may prefer a classification based on those models. Given that our work
focuses on algorithms for various eco-routing problems, we primarily categorize existing works based on the eco-routing
problems studied in these papers and the proposed algorithms. Nevertheless, we also provide two tables (Table 1 and
Table 2) that classify these works according to other taxonomies for readers with different interests. These tables can
be particularly useful for readers interested in classifications by a different taxonomy. For example, a reader may be
looking for works that use mesoscopic energy consumption models. They can refer to these tables to identify relevant
works in that category.

The rest of this section is structured as follow. We present taxonomies for each aspect illustrated in Fig.1, including: i)
fuel/energy consumption models (Section 2.1); ii) type of routing problems studied and the algorithms used (Section 2.2);
iii) vehicle parameters (Section 2.3); iv) traffic (Section 2.4); and v) road network characteristics (Section 2.5).

Energy Consumption Models (Section 3.1)

Eco-routing Problems and Algorithms (Sections 3.2 and 4)

Vehicle Parameters (Section 3.3)

Traffic (Section 3.4)

Road Network Characteristics (Section 3.5)

Elements of
 Eco-Friendly Route Planning

Fig. 1. Elements of eco-friendly route planning.

2.1 Energy Consumption Models

The energy consumption models that estimate the overall energy consumption of a vehicle during navigation on
roads have an enormous impact on eco-routing. As the energy consumption depends on a variety of factors, we will
first summarize these factors in Section 2.1.1, and then present two different paradigms of taxonomies for energy
consumption models. Specifically, we discuss existing energy consumption models from the perspective of transparency
in Section 2.1.2 and from the standpoint of granularity of input data in Section 2.1.3.
Manuscript submitted to ACM
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2.1.1 Factors affecting energy consumption. A large number of factors affect a vehicle’s energy consumption and
emission while navigating on a road. Ahn et al. [13] categorized these into six main categories: travel-, weather-,
vehicle-, traffic-, roadway-, and driver-related factors. Table 3 in the Supplementary Material is an enriched and more
informative version of a table presented in a previous survey paper [228]. In particular, Table 3 shows some examples
of each factor influencing energy consumption as previously noted in [228] and shows the percentage effects of each
factor in the first column on the energy consumption.

Researchers have discovered that some factors are more important than others in developing various energy
consumption models. The engine is the major fuel economy determinant, and thus most energy consumption models
consider different vehicle-specific parameters [82, 87, 123]. The size, power, and speed of an engine, the type of energy
used, and whether or not an exhaust after-treatment system is installed directly affect engine energy usage [35].
However, using these variables are ineffective if the vehicle type is unknown to the system or if we want to find
eco-routes for a new type of vehicle. Thus, many works only consider a subset of these factor while designing their
energy models. Apart from the vehicle and engine specific factors, driving behaviors [28, 125, 129] and roadway-related
factors (roadway grade, surface roughness, and horizontal curvature) [226] significantly impact the energy usage. The
road grade affects fuel consumption and emissions [63, 154]. For example, if one route has major hills and another is
somewhat longer but less hilly, the longer route may be more environmentally friendly.

Developing a new energy consumption model should prioritize roadway and driver variables, followed by travel and
weather. Finally, we can incorporate traffic-related aspects by addressing communication between the driver, vehicle,
and traffic signals [228].

2.1.2 Transparency based classification. The level of physical knowledge about the model and how the user could
interpret the model differ among models. Thus, existing literature often classifies the models based on transparency,
representing how transparent (or easy) it is to perceive a model’s structure, equations, parameter values, and assumptions
for an outsider. Existing fuel consumption models are divided into three categories based on the degree of transparency
they provide: white-box, black-box, and grey-box. White-box models rely on mathematical formulation and physics to
develop equations to represent the influential sub-processes of the energy consumption and thus require a complete
understanding of the system. In contrast to white-box models, black-box models lack physics in their model structure and
rely solely on the system’s input-output mapping based on data (e.g., data-driven machine-learning models). Grey-box
models are hybrid models that work in-between, i.e., their transparency level falls between white and black-box models.
A grey-box model is based on insights into the system considered and experimental data. Fig. 11 in the Supplementary
Material illustrates the properties of these three types of models.

White-box fuel consumption models [43] are based on engine’s physical or chemical processes, i.e., they use
mathematical formulas to describe the processes of engine intake, compression, combustion, and exhaust. The number
of parameters that need to be determined in a white-box fuel consumption models is typically large [109]. A black-box
fuel consumption model [12, 48, 155, 158, 167, 171, 220] is usually based on experimental data and data processing
methods. Such a model is mainly mathematical because it provides little physical explanation. Furthermore, black-box
fuel consumption modeling has several disadvantages: it is a entirely data-driven model that must be calculated using
various linear or nonlinear regression methods based on a significant amount of data. A grey-box fuel consumption
model [157] is a hybrid of a white-box and a black-box model. Unlike a white-box model, a grey-box fuel consumption
model does not require detailed engine knowledge, making it easier to create. Researchers have experimented with
combining multiple modeling methods to model fuel consumption because each has its own unique properties. For

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 A. Fahmin et al.

example, Chiara et al.[61] designed a hybrid instantaneous fuel consumption model for diesel engines that includes
white-box and grey-box models.

White box models require the lowest amount of experimental data. Their accuracy is relatively high; however, their
structures are highly complex, increasing the computation time if used in eco-routing systems. Saerens et al. [171]
suggested that the black-box fuel consumption model is suitable for use in complex applications such as eco-driving and
eco-routing systems where the engine seems like a black box. The prediction accuracy of grey-box models is believed
to be higher [228] than that of black-box models, although there are exceptions. A recent review [227] shows that there
are many data-driven models that achieve high accuracy although they often lack explainability or generalizability.

Energy consumption models are essential for eco-routing, and the accuracy of the energy consumption models vary
with the types of model that is used. In the next section, we present a taxonomy of consumption models based on the
input data used by different models.

2.1.3 Input-Data based Classification. The level of input needed by the system is a differentiating factor for energy
consumption models. Some models require more detailed instantaneous information, e.g., instantaneous speed, whereas
others calculate energy based on aggregate data, e.g., total distance, average speed, etc. Based on the input data required
for the model, energy consumption models can be divided into three categories: Macroscopic Models, Mesoscopic Models,
and Microscopic Models (see Fig. 2).

Energy Consumption Models

Macroscopic

Mesoscopic

Microscopic

Fig. 2. Taxonomy based on input data.

Macroscopic models [134] typically estimate energy consumption based on total route mileage or aggregate route
distance. These models provide a high-level overview by considering overall distances traveled but fail to account
for driving heterogeneity, such as variations in traffic conditions, road types, and individual driving styles. This lack
of granularity makes them generally unsuitable for solving the eco-routing problem, which requires a more detailed
analysis of fuel efficiency based on specific driving conditions [116]. However, due to their simplicity and computational
efficiency, macroscopic models can be beneficial for preliminary route planning where a quick estimation of energy
consumption is needed without delving into the complexities of driving behavior.

In contrast, microscopic models [29, 97, 153, 157, 167, 169] usually offer the highest accuracy in computing energy or
fuel consumption. These models simulate the vehicle’s behavior at a detailed level, considering a range of parameters
including engine idling induced by traffic signals, instantaneous acceleration, deceleration, and speed variations within
each link of the road network [59]. By capturing these detailed dynamics, microscopic models can accurately predict
fuel consumption and emissions under various driving conditions. However, this high level of detail requires extensive
real-time data inputs, such as precise traffic signal timings, real-time speed, and acceleration data, which are often
challenging to obtain before the trip begins. The need for such detailed and dynamic data can limit the practical
applicability of microscopic models, especially for real-time applications.

To address these challenges, mesoscopic fuel consumption models [15, 132, 219] offer a compromise between
macroscopic and microscopic approaches. Mesoscopic models estimate energy consumption by calculating link costs
based on average speeds and other predictable parameters for each link in the road network. They do not require detailed
transient driving behaviors as inputs, making them more feasible for real-time eco-routing applications compared to
Manuscript submitted to ACM
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microscopic models. By averaging traffic conditions and simplifying driving dynamics, mesoscopic models can provide
reasonably accurate estimates of energy consumption with less computational complexity and data requirements.
However, the simplification inherent in mesoscopic models can lead to less precise estimates in scenarios with significant
traffic variations or complex road conditions, where detailed driving behavior plays a crucial role in determining fuel
consumption [10, 89].

2.2 Eco-routing Problems and Algorithms

Existing works on eco-routing can be classified considering the following aspects: i) eco-routing problem formulation;
ii) the algorithms they employ to solve the problem; and iii) whether or not they consider rerouting (in case better
routes become available). Next, we discuss these in details.

2.2.1 Problem Formulation. Research shows that eco-routes can take longer time as well as longer distance to travel
than the fastest or shortest route. Thus users may want to impose additional constraints on route length, travel time, or
other vehicle specific constraints such as refueling and battery recharging facilities along the way. As shown in Fig. 3,
the existing research can be categorised into two main types of problem formulation for eco-routing: unconstrained
eco-routing and constrained eco-routing.

Eco-routing Problems

Unconstrained 
Eco-routing

Constrained 
Eco-routing

Path-based Constraints

Time-based Constraints

Vehicle-based Constraints

Hybrid Constraints

Fig. 3. Taxonomy based on problem formulations.

Unconstrained Eco-routing. In unconstrained eco-routing [20, 75, 89, 135, 170], one is only interested in finding the
path that has the minimum energy consumption from the origin to the destination, disregarding all other constraints
such as travel time, distance, etc. We formally define the unconstrained eco-routing problem as follows. Given a directed
road network graph 𝐺 (𝑉 , 𝐸) consisting of a set 𝑉 of nodes and a set 𝐸 of edges/links. A link 𝑒 = (𝑖, 𝑗) ∈ 𝐸 is a directed
edge from node 𝑖 to node 𝑗 and has an associated cost 𝑐𝑖 𝑗 referring to the cost to travel on the edge from 𝑖 to 𝑗 , such
as edge length, travel time, or energy consumption. A path from an origin 𝑜 to a destination 𝑑 may be defined as a
sequential list of links: (𝑜, 𝑗), . . . , (𝑖, 𝑑) and the energy consumption cost of the path is the total energy consumption of
the vehicle if it takes this path. The unconstrained eco-routing problem is to find the path that has the minimum energy
consumption cost from the origin 𝑜 to the destination 𝑑 .
Constrained Eco-routing. As discussed earlier, the most eco-friendly route may have higher travel distance or travel
time. A user may choose not to travel on a path that significantly increases the traveling time or distance regardless of
the saving of associated energy consumption or emissions. Therefore, users may want to define additional constraints
to find the most eco-friendly path among all paths. In constrained eco-routing, additional constraints are defined and
the goal is to find the most eco-friendly route that satisfies these constraints. As shown in Fig. 3, these constraints may
be based on path, time, vehicle, or a combination of these (i.e., hybrid constraints). In path-based constraints, drivers
can set their preferences about the route, e.g., preferring freeways or stopping for charging/fuelling along the route.
Time-based constrained eco-routing tries to find the most eco-friendly route such that the traveling time on this route
is at most (𝑡 · 𝜖) where 𝑡 is the traveling time on the fastest route, and 𝜖 ≥ 1 is a user-defined parameter. In vehicle-based
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constraints, users can have preferences about the vehicle’s initial charge level, battery capacity, desired charge level
after the trip, etc. Generally speaking, these problems are the Constrained Shortest Path (CSP) problems, an extension
of shortest path algorithms [122]. The path computed using CSP is the shortest path fulfilling a set of constraints. A
generic CSP algorithm has been covered in previous studies [60, 99].

2.2.2 Solution Types. Many different types of solutions have been proposed for different types of eco-routing problems.
The existing solutions can be broadly categorized into two sub-domains: search-based solution and optimization-based

solution (see Fig. 4). Generally, in a search-based approach, the algorithm conducts a search on the road network (e.g., by
incrementally exploring nearby edges) to find the required solution. On the other hand, an optimization-based solution
typically uses mathematical optimization to optimize the given objective function while taking into account the defined
constraints.

Eco-routing Algorithms

Search-Based 
Routing Algorithms

Optimization-Based 
Routing Algorithms

Label Setting Algorithms

Label Correcting Algorithms

Single-objective

Multi-objective

Fig. 4. Taxonomy based on algorithms.

Search-Based Solution. Search-based path-finding approaches have been extensively studied [104]. Search-based
algorithms can be classified into two main classes: label-setting and label-correcting [60, 224]. Both approaches are
iterative and employ the labeling method [100, 224] in computing one-to-all optimal paths. However, the two groups of
algorithms differ in how they update the estimate of the optimal weight associated with each node at each iteration and
in how they converge to the final optimal one-to-all optimal paths. In label-setting algorithms, the final optimal weight
from the source node to the destination node is determined once the destination node is scanned and permanently
labeled. For example, Dijkstra’s algorithm and A* algorithm are two well-known label-setting algorithms. In contrast, a
label-correcting algorithm treats the weights of all nodes as temporary, and the shortest paths to the nodes are not
determined until the algorithm terminates [225]. For example, Bellman-Ford algorithm is a label-correcting algorithm.
Some variations of Dijkstra’s algorithm (e.g., when multiple criteria are to be considered) are also label-correcting.
Optimization-Based Solution. Optimization-based solutions include all relevant factors while determining the most
energy-efficient route [86]. Based on the number of objectives to be optimized, we may further divide it into two
categories (i.e., single-objective vs. multi-objective). A single-objective optimization problem aims to find the best
solution for a specific criterion or metric. On the contrary, multi-objective optimization refers to locating the optimal
route for more than one desired goal [73]. A standard solution to such problems is combining multiple objectives into
one single-objective scalar function. This approach is generally known as the weighted-sum, or scalarization method
[127]. The weighted-sum method is commonly used because of its simplicity, ease of use, and direct translation of
weights into the relative importance of the objectives [146].

2.2.3 Rerouting. Traffic and other road conditions are usually highly dynamic and the optimal route choice may change
as the traffic and/or other conditions change. Therefore, it is important to offer drivers feasible detours when their
typical route is highly crowded as a result of accidents, events, or other unusual traffic patterns [90]. In some application
scenarios, a user may be interested in keeping track of the optimal route (e.g., most eco-friendly route) as the network
changes dynamically. This is called rerouting. In some other applications, the user may only be interested in obtaining
the optimal route at the start of their journey and does not need to update the route continuously (e.g., ignoring the
Manuscript submitted to ACM
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underlying dynamic network conditions). Therefore, we categorize the existing works based on whether they consider
rerouting or not.

2.3 Vehicle Parameters

For a given origin-destination pair, the routes returned by an eco-routing algorithm may differ significantly based on
various parameters of the vehicles [8, 168]. Therefore, it is essential to investigate and compare the effects of diverse
eco-routing strategies across different vehicle parameters. In Fig. 5, we introduce a taxonomy classifying these vehicle
parameters. The existing research considers vehicles from two aspects: how the type of vehicle affects its energy
consumption (aka. vehicle type); and how the power system supports the travel of vehicles (aka. vehicle propulsion).
Vehicle Type. Focusing on vehicle size, we can categorize vehicles into twomain groups: light-weight and heavy-weight.
The light-weight category includes various types of cars, while the heavy-weight category comprises larger vehicles
such as buses and trucks. This classification aims to provide a clear distinction between smaller vehicles typically used
for personal use and larger vehicles typically used for commercial purposes or for public transport. While there are
extra lightweight vehicles, like e-bikes and e-scooters, existing literature on eco-routing often overlooks this category
mainly because of their lower carbon footprint, prompting us to omit them for the same reason. Note that heavy-weight
vehicles can be further classified based on their Gross Vehicle Weight Rating (GVWR), e.g., in the United States, these
classes are numbered 1 through 8. However, such detailed classifications may vary by region and most of the eco-routing
techniques are not affected by such detailed classification. Therefore, we limit our classification to light-weight and
heavy-weight vehicles.

Vehicle 
Parameters

Based on 
Vehicles Propulsion

Based on 
Vehicles Types

ICEVs
Internal combustion 

engine vehicles

AEVs
All electric vehicles

Light weight

Heavy weight

HEVs 
Hybrid electric vehicles

Full-HEVs

PHEVs 
Plug in hybrid electric 

vehicles

BEVs
Battery electric vehicles

FCEVs
Full cell electric vehicles

Solar 
electric vehicles

Fig. 5. Taxonomy based on vehicles.

Vehicle Propulsion. The vehicle propulsion or powertrain system supplies the power necessary for a vehicle to
travel, with energy consumption varying depending on the type of propulsion system used. There are three main
types of propulsion system: ICEVs (internal combustion engine vehicles), HEVs (hybrid electric vehicles), and AEVs

(all-electric vehicles). HEVs can be further classified into two categories: Full-HEVs and PHEVs (plug-in hybrid electric
vehicles) [110]. While both Full-HEVs and PHEVs utilize internal combustion engines and electric powertrains, the
main difference lies in the battery capacities and charging capabilities. Compared to Full-HEVs, PHEVs typically boast
larger battery capacities and ability to charge them by connecting to external power sources such as wall chargers and
charging stations [200]. AEVs can be further classified into BEVs (battery electric vehicles), FCEVs (fuel cell electric
vehicles), and solar electric vehicles [72]. BEVs use the electricity stored in their battery to run the electric motor. FECVs
also run an electric motor. However, instead of recharging a battery, an FCEV combines hydrogen with oxygen from
the air to produce electricity to run the vehicle’s motor [193]. Lastly, solar electric vehicles use self-contained solar cells
to power themselves fully or partially from sunlight [64].
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The impacts of propulsion system can be seen from two different angles: 1) Some additional constraints may be
introduced by a particular vehicle propulsion system directly impacting the routing algorithm. For example, we may
have negative edge costs for electric vehicles because of regenerative braking. In such cases, some traditional routing
algorithms may become inapplicable. 2) Some energy consumption models are vehicle-specific. For example, the
Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM) [167] is used to model conventional
gasoline/diesel vehicles, while the electric vehicle energy consumption model (VT-CPEM) [96] is developed to estimate
electric vehicle energy consumption.

2.4 Traffic

Traffic conditions significantly affect the energy consumption of vehicles, e.g., traffic jams or slow-moving vehicles
can dramatically increase energy consumption. Some existing works consider the effect of traffic while planning the
eco-route, whereas others ignore the impact of traffic. The existing works that consider traffic typically considers
two main aspects: how the traffic is assigned to the road network (a.k.a. traffic assignment); and how much detailed
information was considered (a.k.a. traffic flow).
Traffic Assignment. Traffic assignment models are used to estimate the traffic flows on a network. There are two
types of traffic assignment models: dynamic traffic assignment (DTA) and static traffic assignment (STA), as shown
in Fig. 6. The STA models ignore congestion and assume an equal inflow and outflow from a link, which is usually
unrealistic [62]. Average speed, traffic volume, traffic composition, and level of service are the significant outputs of STA
models [189]. On the other hand, DTA models are based on a direct relationship between congestion and traffic flow
[205]. DTA represents the real-world scenario more accurately by considering the traffic flow that changes with time.
The traffic demand in DTA models may fluctuate over time, but the traffic demand in STA models remains constant.
Therefore, a more reliable estimation of weights reflecting traffic characteristics is achieved in DTA.

Traffic

Based on 
Traffic Assignment

Based on 
Traffic Flow Model

Dynamic Traffic Assignment (DTA)

Static Traffic Assignment (STA)

Macroscopic

Microscopic

Mesoscopic

Fig. 6. Taxonomy based on traffic.

Traffic Flow. According to traffic flow models, there is a correlation between the distance between vehicles and their
velocities [76, 199]. There are three types of traffic flow models [145]: microscopic, mesoscopic, and macroscopic (as
shown in Fig. 6). The microscopic models describe the behavior of individual vehicles taking into account detailed
temporal characteristics, as well as the drivers’ behavior [162]. The output contains each vehicle’s position, speed, and
acceleration at each time step. The mesoscopic model [25] lies between the microscopic and macroscopic flow models.
It captures the overall flow of vehicles as a probability distribution (typically) and how they should behave. Lastly, the
macroscopic models [36, 156, 194] consider the aggregate behavior of traffic flow. The main disadvantage is that it does
not reflect reality or certain traffic incidents such as queues [18].
Manuscript submitted to ACM
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2.5 Road Network Characteristics

Typically, a road network is a graph representing road segments and their interconnections. Existing approaches of
eco-routing consider road networks of varying sizes when designing their energy consumption models and routing
algorithms. However, the models’ outcome and the routing algorithms’ applicability largely depend on the road
network’s size. For example, some routing approaches may not scale to city-scale or country-scale road networks, e.g.,
due to computational complexity and unavailability of data. We will discuss the limitations in detail in Section 4.

Road Network 
Characteristics

Based on 
Scalability

Based on 
Data Source

Small

Large

Real World

Synthetic Data

Medium

Fig. 7. Taxonomy based on road network characteristics.

In Fig. 7, we present a taxonomy based on the road networks used in the existing studies. Considering the scalability
of the road networks, we classify it into three categories. Small-sized road networks consist of a few roads, a small
part of a highway, or a zone with a limited number of intersections. A medium-sized road network typically covers an
entire metropolitan area, whereas a large road network covers multiple regions. We also consider whether the existing
approaches used real-world data or synthetic data. Note that while road networks can be further classified based on the
complexity of their topological structure, this study does not include such classification because no existing research
has focused on differentiating network complexity.

3 REVIEW OF ECO-ROUTING ALGORITHMS

In this section, we provide a review of the selected papers using the taxonomies presented in the previous sections.
First, in Section 3.1, we discuss the existing works that focus on finding the eco-routes ignoring all constraints (i.e.,
unconstrained eco-routing). Then, in Section 3.2, we present the existing studies on constrained eco-routing. Finally,
in Section 3.3, we analyze the advantages and disadvantages of various existing techniques for both constrained
eco-routing and unconstrained eco-routing.

3.1 Unconstrained Eco-Routing

Table 1 summarizes the related works on the unconstrained eco-routing using the taxonomies we present in Section 2.
Specifically, for each paper, we highlight the details of the energy consumption model used, vehicle types considered,
experimental setup, and the type of routing algorithms used to solve the problem. In some of the works, the authors
focus only on improving the routing algorithm. Here they do not explicitly mention different factors but assume that the
energy consumption cost for each edge of the network is given/known. In Table 1, we mark those as “Cost was provided
as input to the Algorithm”. For the “Based on Type” column, we have assigned “L” for Light weight vehicles, “H” for
Heavy weight vehicles, and “B” for models applicable to Both types. Similarly, in the “Scalability” column, “S”, “M”, and
“L” denote small, medium, and large size datasets, respectively. Given that the main focus of this work is on eco-routing
algorithms, next we review these works mainly focusing on the routing algorithm used to solve the problem.
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3.1.1 Dijkstra’s Algorithm. Majority of the existing eco-routing works (e.g., [20, 51, 53, 57, 89, 106, 107, 163, 202, 208,
213, 215]) use the well-known Dijkstra’s algorithm [77] for finding the most energy-efficient route. The application of
Dijkstra’s algorithm is straightforward for the cases where the traffic is assumed to be static (e.g., [20, 53, 106, 213]).
However, the other group of works (e.g., [57, 107, 215]) use special mechanisms to handle the dynamic traffic scenario.
Chen et al. [57] propose a dynamic algorithm where each vehicle receives real-time navigation information at traffic
intersections. The real-time traffic information of the system is monitored by the sensing devices mounted on public
transport facilities. The proposed algorithm recomputes the eco-route at each intersection.

Yao and Song [215] estimate emissions and fuel consumption for each link based on traffic data updated every 5
minutes. They use the least heap structure [136] to make the algorithm more efficient and practical. Guo et al. [107]
execute optimal route planning using dynamic traffic information and an updated Dijkstra’s algorithm. The traditional
Dijkstra’s algorithm is a blind search algorithm, where the resulting search area is too wide, and there are too many
discovered nodes [98, 229]. The proposed algorithm limits the search area of the Dijkstra’s algorithm. Compared to the
standard Dijkstra’s algorithm, the modified Dijkstra’s algorithm avoids congestion promptly and can re-plan the vehicle
path based on real-time traffic intelligence, reducing travel time by 25%. Unlike other works, Fanti et al. [91] consider
the heavy-weight vehicle and propose an eco-route planner consisting of two main modules: the data manager and the
cloud optimizer. The data manager handles the processing of extensive data from external devices, while the cloud
optimizer is tasked with constructing both the route network graph and the admissible state graph. The algorithm apply
Dijkstra’s algorithm to these graphs to determine the optimal eco-route, including associated optimal velocity and gear
profiles. Simliarly, Wang et al. [202] capture the impacts of vehicle type, vehicle transient behavior, and the timeliness
of road information in the routing solutions. Their approach ensures that the optimum routes are tailored for each
vehicle type, meaning that vehicles of different types may be assigned different routes. It also allows real-time vehicle
rerouting by calling the algorithm again, when a vehicle reaches an intersection, to find the most eco-friendly route
based on the current traffic information. They deal with the negative weights by assigning zero weights on negative
links and thus can use Dijkstra’s algorithm. The application of the proposed eco-routing method requires real-time
vehicle communication to and from the cloud. Similar to this work, Jayol et al. [119] also utilize a time-dependent
Dijkstra algorithm in their model. Instead of relying on connected vehicles environment, Fahmin et al. [89] propose an
algorithm to create the mobility profile (e.g., instantaneous speed, acceleration/deceleration, idling time) of a vehicle
on-the-fly by considering the maximum possible speed, traffic lights, vehicle type, and driving behavior. Similarly,
Chen et al. [51] introduce a framework that incorporates personalized fuel consumption modeling for eco-routing.
The framework employs Dijkstra’s algorithm to identify the shortest path, which is then partitioned into sub-routes.
Subsequently, these sub-routes are evaluated based on both fuel consumption and travel time, aiming to recommend
the sub-route with the shortest travel time and minimal potential fuel consumption.

3.1.2 A* Algorithm. Another large group of research works on eco-routing (e.g., [47, 75, 115, 131, 135, 142, 148, 170, 176])
use A* algorithm [111] to find the most energy-efficient route. Compared to Dijkstra’s algorithm, A* is an informed
algorithm guided by a heuristic which assigns, for each explored vertex, a lower bound cost to reach the target vertex.
A* algorithm is more efficient than the Dijkstra’s algorithm as it explores a smaller area of the road network due
to the heuristic employed. Before applying the A* algorithm, Saremi et al. [176] multiply the distance by an inverse
mile-per-gallon (mpg) metric that results in lower weights for fuel-optimal ways. Most eco-routing approaches ignore
the signalized intersection’s idling time and energy usage. A vehicle traveling through a signalized intersection may
accelerate/decelerate following the traffic light phase, resulting in increased energy usage. It may also need to stop and

Manuscript submitted to ACM



748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

16 A. Fahmin et al.

wait. These factors have critical impact on overall energy consumption [13]. Hu et al. [115] extend the A* algorithm
to find the optimal route considering the influence of traffic lights. The system can effectively avoid roads with too
many signalized intersections that are closely located to each other. The instantaneous fuel consumption model [210]
used in this study uses acceleration and vehicle speed. The method is suited to urban roads with dense traffic signals.
Recently, electric vehicles (EVs) have attracted much research interest due to their adoption worldwide and future
perspectives. One of the EVs’ challenging aspects is their poor climbing ability due to limitations associated with battery
efficiency [201, 214]. Ku et al. [131] investigate the routing of an EV on a terrain. This study determines the optimal
route using 3D spatial data and the slope of each link in the route. The algorithm encourages EVs to use a different
route in mountainous areas where there are many slopes, even if the route is slightly longer. Most existing works
use cost on distinct edges. However, Le Rhun et al.[135] provide a framework in which eco-routes are computed on a
weighted graph with nodes representing (position, state of charge) pairs for the vehicle. They apply the conventional A*
algorithm with a heuristic based on a lower bound on the energy required to complete the journey. All the above works
that use the A* algorithm have a single objective heuristic. Chakraborty et al. [47] present an intelligent Multi-Objective
Heuristic Algorithm (MoHA), a graph-based scheduling strategy that uses the multi-objective A* search algorithm.
They describe four MoHA variants: energy-aware, time-aware, random, and weighted, each of which utilizes different
techniques to break ties among numerous non-dominated solutions. Liu and Zhang [142] introduce an enhanced A*
algorithm where they utilize a novel fuel consumption calculation method, taking into account the fuel consumption
and proportions of different vehicles. While they integrate traffic lights to simulate natural traffic conditions, their
approach does not explicitly address traffic congestion.

3.1.3 Bellman-Ford Algorithm. Regenerative braking is an energy recovery mechanism typically used in hybrid and
electric vehicles. When regenerative braking is considered, the energy consumption can be negative [133, 188]. Therefore
the eco-routing algorithm must address the issue of negative weights along edges. Bellman-Ford algorithm [33] can
work with negative weights and detect negative cycles. However, compared to Dijkstra’s algorithm, it has several
drawbacks, such as a higher run-time. De Nunzio et al. [71] propose a novel macroscopic energy consumption model
and a novel eco-routing strategy based on Bellman-Ford algorithm.

3.1.4 Optimization-based Approach. So far, we have presented search-based routing approaches. Another class of
routing algorithms is optimization-based where the problem is first formulated using mathematical equations and
then, by solving those equations, the optimal route is obtained. In [26, 173, 197], authors use different optimization
techniques to discover the lowest energy route. Van De Hoef et al. [197] address the issue of coordinating track platoon
formation and breakup in an energy-efficient manner. They create an optimization problem that considers routing,
energy usage based on speed, and platooning decisions. Bandeira et al. [26] formulate the eco-routing problem as
a non-linear and non-convex optimization problem and solve it using the Premium Solver Platform [65]. Sun and
Zhou [187] propose a cost-optimal algorithm (COA) for plug-in hybrid electric vehicles (PHEVs) routing against the
conventional minimum traveling time routing (shortest path). The problem is solved using dynamic programming [34].
Houshman and Cassandras [113] present a Combined Routing and Power-train Control (CRPTC) eco-routing algorithm
for PHEVs. They use a mixed-integer non-linear programming (MINLP) approach to describe the eco-routing problem.
Although it is possible to tackle this problem by utilizing Dijkstra’s algorithm as demonstrated previously [163]. They
present an alternative solution called Hybrid-LP Relaxation. They solve the MINLP problem using a combination of
linear programming (LP) and a simple dynamic programming-like algorithm, ensuring global convergence. Likewise,
Salazar et al. [173] frame the eco-routing problem as a Mixed-Integer Linear Program (MILP) that can be solved quickly
Manuscript submitted to ACM
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using commercial optimization methods. Abousleiman and Rawashdeh [5] use two metaheuristic optimization methods
(Ant Colony Optimization (ACO) [174] and Particle Swarm Optimization (PSO) [181]) to find the most energy-efficient
route for EVs. Similarly, Caspari et al. [45] formulate the routing problem as a MILP problem and solve it utilizing the
off-the-shelf solver, Gurobi. Scora et al. [178] present eco-routing for heavy-duty trucks incorporating a truck energy
and emission model that considers factors such as vehicle weight, real-time traffic speed, and road grade. They compute
all possible route combinations between the source and destination, then pick the optimal one for heavy-duty trucks.
These approaches are typically unsuitable for large road networks due to their high computational complexity.

3.1.5 Miscellaneous Approaches. Another group of eco-routing systems adopts feedback-based eco-routing (FB-ECO)
strategies [11, 83–85, 108, 166, 202]. To compute the route, the FB-ECO utilizes Vehicular Ad Hoc Network (VANET)
communication to update link costs in real time based on the experiences of other vehicles in the system. These
approaches work as follows. First, upon traveling a road link, a vehicle submits its energy consumption on that link. It
then queries to determine which link it should travel next to reach its ultimate destination most efficiently. The FB-ECO
navigation system assumes that some vehicles, often called sensor vehicles or probe vehicles, can calculate the amount
of energy used on each road link that is traveled. These probe cars are also expected to be connected to the traffic
management center, which reports the estimated energy consumption on the relevant road links. Therefore, dynamic
route guidance can be sent to all vehicles as needed.

Recently, there have been a few works that use a learning-based approach for eco-routing. Chen et al. [55] propose a
novel online eco-routing model for electric vehicles (EVs) to efficiently identify real-time energy-efficient routes for
multiple source-destination pairs. The model uses link-level energy consumption information collected from historical
EV trajectories and formulates the problem as a combinatorial multi-arm bandit problem [54]. Focusing on reinforcement
learning, Xu et al. [211] propose an eco-routing solution based on the Q-learning algorithm. The agent, representing
the eco-routing method, is trained using a Q-table that continuously updates during exploration. The environment is
modeled as a directed graph with road arc costs. The agent’s exploration is guided by the Q-table, introducing a certain
amount of noise. The state is defined as the node where the vehicle is located at a given moment, and the action is
the forward direction taken at the next moment. This approach aims to learn and select actions that lead to the most
eco-friendly route, considering cumulative rewards and environmental factors.

3.2 Constrained Eco-Routing

As discussed in Section 2.2, eco-routing can have multiple types of constraints based on the desired objectives. Here we
group relevant works based on different constraint types and discuss the adopted routing strategies. It is essential to
highlight that constrained eco-routing problems are required to be formulated as a resource-constrained shortest-path
problem (RCSPP) [32, 161], which are NP-complete [14, 37, 44]. Table 2 provides a summary of the major works on the
constrained eco-routing problem by highlighting and contrasting each of these works in several crucial dimensions.
Similar to unconstrained eco-routing (cf. Section 3.1), these dimensions include the energy consumption models, vehicle
types, experimental setups, and routing algorithms. For the “Types of Constraints” column, we have assigned “P” for
Path-based constraints, “T” for Time-based constraints, “V” for Vehicle-based constraints and “H” for Hybrid constraints.

3.2.1 Path-based Constraints. In path-based constraints, drivers can set their preferences about the route, e.g., preferring
freeways, avoiding tolls or stopping for charging/fuelling. Boriboonsomsin et al. [41] use Dijkstra’s algorithm with the
binary heap priority queue to calculate the routes for their eco-routing navigation system. Users’ route preferences,
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such as favoring freeways or avoiding toll roads, are considered in their path-building approach. It can also use the
number of passengers to determine whether a vehicle is eligible to use high-occupancy vehicle lanes.

If the traveling distance is long, EVs need to plan a route that includes charging stations [67, 186]. Traditional
route-planning softwares for gasoline-powered vehicles ignore refuelling because gas stations are widespread and
easy to use. Sweda and Klabjan [188] propose a dynamic programming-based algorithm for an EV when the vehicle
must recharge along the way. Similarly, Arslan et al. [21] propose finding the minimum cost path for PHEVs in a road
network with refueling and charging stations. They formulate the routing problem as a mixed integer quadratically
constrained problem [38]. They solve it using a discrete approximation dynamic programming heuristic and a shortest
path-based heuristic.

3.2.2 Time-based Constraints. As we have discussed earlier, the most eco-friendly route may be quite time-consuming
and/or lengthy compared to the shortest path. Therefore, in many eco-routing approaches, the authors impose a
constraint on the maximum allowed travel time for the route. A travel-time-constrained eco-routing algorithm is
developed to find the most eco-friendly route among the routes that have travel time not much larger than the route
with the least travel time, e.g., the travel time must not be more than 1.25 times of the travel time of the route with the
least travel time. Cela et al. [46] propose a new algorithm that finds a path whose energy cost is optimal and the time
cost is at most 𝛽 times the cost of the time optimal path. The algorithm is based on a combination of the ideas proposed
elsewhere [141, 170, 198]. The core algorithm is based on the algorithms proposed in[141] and [198], which modify
Dijkstra’s algorithm that finds 𝑘 shortest paths. To speed up the routing, they use the A* algorithm for which the lower
bounds of energy to destination are calculated using the backward Dijkstra’s algorithm [74]. In another significant
work similar to the above work, Zeng et al. [221] determine the shortest path between two nodes in a transportation
network with the least amount of 𝐶𝑂2 emissions while staying within a preset travel time budget. They take average
speed, average acceleration, and angle of inclination as the input, making them more suitable for eco-routing than
microscopic 𝐶𝑂2 emission models such as Comprehensive Modal Emission Model (CMEM) [29] and Vehicle-specific
power (VSP) [120]. Later they extended their work in [222] where they use a support vector machine (SVM) model to
estimate the 𝐶𝑂2 emissions. They design a routing technique that ensures the vehicle emits the least 𝐶𝑂2 within a
given journey time budget, avoiding unexpected delays. Their algorithm sorts the 𝑘 paths by ranking the weighted sum
of 𝐶𝑂2 emissions and travel time. Although the approach is intended for ICEVs, it can be adopted for PHEVs and EVs.

Huang and Peng [116] develop a travel-time-constrained eco-routing strategy based on dynamic programming, which
uses the Bellman optimality principle [182] to solve the optimization problem recursively. Conversely, Zeng et al. [223]
propose solving the eco-routing problem with a probabilistic travel time budget using a Lagrangian-relaxation-based
approach [24]. The Lagrangian relaxation procedure is based on relaxing the explicit linear constraints by bringing them
into the objective function with associated Lagrangian multipliers. Ahn et al. [8] incorporate feedback-based algorithms,
as discussed in Section 3.1.5. The model introduces a link cost function for each road network edge, calculated as the
weighted sum of the driver’s value of time and the cost of fuel/energy on specific links. Similar to other feedback
routing options, vehicles update the link cost estimates on a link using only the results of other vehicles in the same
class. Aguiar et al. [7] design the route optimization problem as a minimum cost flow problem, with objective functions
selected by the decision maker. Due to its multi-objective formulation, a set of Pareto-optimal solutions exists for this
problem. The decision of selecting a single Pareto-optimal solution is left to the decision maker. Wu and Dong [207]
introduce a formulation of the time-constrained eco-routing problem using a mixed-integer linear programming (MILP)
model. This model can be efficiently solved by off-the-shelf optimizers, such as Gurobi and Cplex.
Manuscript submitted to ACM
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Concentrating on designing eco-routing for plug-in hybrid electric vehicles, Li et al. [137] propose a bi-level approach
implemented by [113] where at first a Charge Depleting First (CDF) pulse approach [144] followed by linear programming
is used to solve the resource-constrained shortest path problem, with the time being a limited resource. Houshmand et
al. [114] also adopt a similar approach in their proposed eco-routing for PHEVs. They did not consider changing traffic
situations and only studied scenarios involving a single vehicle with a known source and destination. In another study
for connected PHEVs, Guanetti et al. [105] propose a framework where the vehicle sets the energy constraints, and the
user selects the time constraints. They formulate the eco-routing problem as static and dynamic resource-constrained
shortest path problems. In static eco-routing problems, they use a static forecast of the traffic speed over the road network.
In contrast, in a dynamic eco-routing problem, a dynamic model of the traffic speed (flow/density) over the road network
is used. In reality, HEVs could repeatedly recharge their batteries by cycling on the same route. Travel time would be
penalized by turning in circles to recharge the battery, which is discouraging and impractical to the driver. De Nunzio
et al. [69] relax the resource-constrained shortest path problem (RCSPP) to a standard shortest path problem on an
acyclic graph. They note that the constrained Bellman-Ford method [206] may tackle this optimization problem since it
maintains track of partial routes and discards undesirable ones. However, because the time complexity of the constrained
Bellman-Ford algorithm grows exponentially with the graph size, it is still an impractical approach. They applied
a slightly modified version of the Bellman-Ford algorithm. The modified version comes from a previous study [70]
whose authors formulate the bi-objective eco-routing (minimize energy use and journey time) as a single-objective via
weighted-sum scalarization [80].

Sun and Liu [185] develop an eco-routing algorithm for vehicles in a signalized traffic network. Rather than using
GPS-based vehicle trajectory data, which is employed by many previous eco-routing algorithms, they use high resolution
traffic data, such as vehicle arrival and signal status information. They offer a method for incorporating environmental
costs into a vehicle routing algorithm based on theMarkov decision process (MDP). They introduce a linear programming
formulation of MDP to handle multiple objectives. The linear programs can be solved using standard linear programming
solution techniques, e.g., simplex method [149] or inter points method [147].

In a recent work, Teng et al. [191] propose a path ranking algorithm for a bi-objective eco-routing model aiming to
minimize fuel consumption and travel time. In the first stage, they employ an efficient reliable shortest path algorithm
to determine the optimal fuel consumption path and calculate the upper bound for travel time. In the second stage, a 𝐾
reliable shortest path algorithm [50] is used to incrementally identify reliable paths based on travel time, eliminating
dominated paths until a termination condition is met. Here, the authors assume that travel time and fuel consumption
are independent. Several research studies have revealed a significant correlation between the travel time and fuel
consumption of a given link and its neighboring links [52]. In a subsequent work [192], the authors propose a fuel
consumption model considering the spatial link correlation between fuel consumption and travel time. The spatial
correlation is measured using variance-covariance matrices. Subsequently, they adopt a similar path-finding algorithm
as in [191]. Similar to [191], Chen et al. [56] introduced a bi-objective reliable path-finding model specifically designed
for electric vehicles.

3.2.3 Vehicle-based Constraints. In the case of EVs, the vehicle’s initial charge level, battery capacity, and desired
charge level after the trip are vital factors to keep in mind while formulating the eco-routing problem. In one of
the first works in this domain, Artmeier et al. [23] treat the eco-routing problem as a shortest path problem with
constraints on the vehicle’s charge level, such that it can never be negative and can never exceed the battery’s maximum
charge level. Negative edge weights are allowed to indicate energy captured during regenerative braking; but there
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are no negative cycles. They point out that the most commonly used shortest path algorithms, such as contraction
hierarchies [101], highway hierarchies [175], and transit vertex routing [31], cannot be used to address their problem due
to the negative weights caused by recuperation. They evaluate the shortest path problem using four strategies (Dijkstra’s,
expand, expand-distance, and First-In-First-Out) [60]. The algorithm’s time complexity is𝑂 (𝑛2) for positive weights but
exponential in the general case. At the same time, the Bellman-Ford technique (pick the vertices in a First-In-First-Out
way) is 𝑂 (𝑛3) for arbitrary weights. The authors extend their work in [22] where they introduce the concept of energy
graph. The algorithm takes as input a directed graph, in which every edge’s velocity and energy consumption are
known. It generates a modified directed graph with a weight function providing the energy consumption for every
edge independently from its predecessor.

Wang et al. [203] aim to reduce the total time vehicles take to reach their destinations, taking into account both
travel and recharging duration at homogeneous charging nodes, i.e., charging rates at different nodes are identical. They
look at two different approaches to the problem. In the single-vehicle routing problem, they formulate a mixed-integer
nonlinear programming (MINLP) problem. They show that they can reduce it to a lower-dimensional problem by
exploiting the properties of an optimal solution. They also obtain a Linear Programming (LP) formulation allowing them
to decompose it into two simpler problems yielding near-optimal solutions. For a multi-vehicle problem, where traffic
congestion effects are included, they use a similar approach by grouping vehicles into “subflows” and seeking optimal
routing decisions for each subflow. They extend this work in [159], where they consider inhomogeneous charging
nodes, i.e., charging rates at different nodes are not identical. Charging an EV battery can take anywhere from minutes
to hours, depending on the voltage and current of the outlet. As a result, charging rates and timeframes significantly
rely on the charging station class and substantially impact the optimization problem’s solution. Besides, they do not
impose full recharging constraints compared to [177]. Pourazarm et al. [160] solve the above mentioned problem from
their previous work [159, 203] using dynamic programming, resulting in optimal solutions with lower computational
complexity compared to [159]. Their model is identical for both homogeneous and inhomogeneous charging nodes.

Eisner et al. [81] show that the battery capacity constraints can be modeled as cost functions on the edges. To apply
Dijkstra’s algorithm, they generalize Johnson’s potential shifting technique [121] to negative edge cost functions. Wang
et al. [204] propose a framework where the algorithm can find the optimal recharge detour if the destination cannot be
reached with energy on board. Yi and Bauer [216] define the routing problem as a stochastic programming problem
and control the risk of exceeding the remaining battery energy. Based on the normality assumption for energy cost on
each road segment, convex relaxation and transformation [42, 150] are used to solve the initial discrete optimization
issue. The optimal path is built using a highly efficient primal-dual interior point algorithm [151] on the relaxed
problem. Recently, De Nunzio et al. [68] compare various practical solution approaches for the eco-routing problem of
Hybrid Electric Vehicles (HEVs). The comparison focuses on solution accuracy and computation time in addressing this
constrained optimization problem. However, certain constraints, such as battery limits, are relaxed in the approach
designed to maintain a low computational burden. Consequently, this method may not be suitable for solving the
eco-routing problem for All-Electric Vehicles (AEVs), where the battery could be fully depleted, necessitating constraints
to enforce a minimum bound on the battery level.

3.2.4 Hybrid Constraints. All the different types of constrained eco-routing discussed above primarily aim to mitigate
one constraint at a time. Several other works (e.g. [17, 145, 152]) attempt to optimize multiple objectives simultaneously.
Nie and Li [152] propose an eco-routing problem that minimizes the total travel cost (monetary value of both energy
and time) while meeting a given 𝐶𝑂2 emission standard. They solve the constrained shortest path problem using
Manuscript submitted to ACM
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off-the-shelf solvers [118]. The findings imply that disregarding the impacts of turning movements and acceleration
may result in sub-optimal routes. They claim that the same technology is unsuitable for EVs, owing to the scarcity of
charging facilities and the possibility that a proposed route would be impractical given an EV’s initial charge level. They
present two strategies for identifying an optimal path: backward recursion and approximate dynamic programming.
Luo et al. [145] design eco-routing as a constrained combinatorial optimization problem in the Model Predictive Control
(MPC) framework and use the parallel Tabu Search algorithm [27] to solve it. The objective is to reduce the total time,
emissions, and fuel consumption for all vehicles moving across a network. In a similar work, Alfaseeh and Farooq [17]
develop multi-objective eco-routing strategies for connected and automated vehicles based on a dynamic distributed
routing framework. In this study, they compare the results when only travel time is optimized, only greenhouse
emissions are optimized, or when a combination of travel time and emissions is optimized. Simliarly, Djavadian et
al. [79] developed a multi-objective eco-routing system utilizing a real-time end-to-end connected and automated
vehicle routing scheme [94]. The objective was to simultaneously minimize travel time, greenhouse gas (GHG), and
𝑁𝑂𝑥 emissions. Although 𝑁𝑂𝑥 is not explicitly included in the objective function, the results demonstrated that the
proposed multi-objective routing could potentially reduce 𝑁𝑂𝑥 emissions by 18.5%. This substantial improvement was
achievable due to the multi-objective eco-routing’s indirect addressing of the main factors influencing 𝑁𝑂𝑥 , namely,
long travel time and high speed.

3.3 Critical Analysis: Pros and Cons in Existing Research

In this section, we compare different approaches used by the existing studies and discuss their advantages and
disadvantages. As mentioned earlier, the existing eco-routing algorithms can be categorized into unconstrained and
constrained eco-routing. Next, we briefly discuss the pros and cons of various techniques in each category.

For unconstrained eco-routing, most existing studies utilize fundamental search-based algorithms like Dijkstra’s
algorithm andA* algorithm. The primary advantages of utilizing these algorithms lie in their simplicity of implementation
and their online search methodology, making them adaptable to various energy consumption models and conducive to
incorporating real-time navigation information such as traffic conditions, traffic lights, and other dynamic factors. These
algorithms do not require preprocessing and can easily accommodate dynamic changes in the road network, such as
updates in travel time and fuel consumption due to changed traffic conditions. In contrast, more advanced pathfinding
algorithms, such as contraction hierarchies [102, 180] and hub labeling [6, 139], require significant preprocessing costs
and, therefore, are not suitable for dynamic updates. Furthermore, these more advanced algorithms typically require
significant memory to store the indexes. The key disadvantage of the search-based algorithms is their high query
processing time. For instance, Dijkstra’s algorithm exhaustively searches through the search space, resulting in a
substantial computational burden [78, 164]. While the A*-based algorithm mitigates this burden to some extent by
employing heuristics to limit the search effort, the efficiency of the algorithm often depends on the effectiveness of the
designed heuristic, which can still lead to relatively long runtime [104].

Several existing studies use the Bellman-Ford algorithm to handle negative edge weights caused by regenerative
braking of EVs, which can lead to negative energy consumption for some edges. While this algorithm offers similar
advantages to the Dijkstra’s algorithm such as its adaptability to dynamic updates, it tends to run much slower
than Dijkstra’s algorithm [66]. Introducing negative edge weights in the road network provides a more accurate
representation of real-world energy consumption on routes but also significantly increases computation time. Therefore,
when designing real-world systems, it is important to assess whether adding negative edge weights significantly
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improves energy consumption estimation. If not, graphs should be restricted to non-negative weights so that Dijkstra’s
or A* algorithms can be applied for better runtime.

Another line of research employs optimization-based approaches to compute the eco-route. These methods typically
formulate the problem using mathematical equations and utilize third-party libraries or off-the-shelf solvers for
computation. However, since optimization-based methods often involve maintaining a large number of variables on
each node of the graph, they tend to scale poorly [68]. As indicated in Table 2, these approaches are generally suitable
only for small to medium-scale networks.

Other miscellaneous approaches, such as the feedback-based approach used in many existing works, involves
frequent communication between vehicles and the navigation system. Its primary advantage is its ability to provide
more accurate eco-routing by utilizing real-time information. However, a notable drawback is that this approach
requires vehicles to be equipped with sensors and the capability to communicate with the server and, in some cases,
other vehicles [83, 202, 222]. Additionally, if the number of participating vehicles (e.g., vehicles with sensors) is small,
the system’s accuracy may be compromised. Therefore, for this approach to be effective, a large number of participating
vehicles is ideally needed, covering at least the major parts of the network. Moreover, the communication between the
vehicle and the navigation system often introduces additional delays. Learning-based approach has also been used for
eco-routing. The primary advantage of utilizing this approach lies in its ability to adapt to dynamic traffic conditions in
real time [211]. However, learning-based methods typically necessitate the collection of large data from previous trips.
Consequently, the quality of the solution may be contingent upon the quality of the data gathered, potentially leading
to issues such as data dependency and limited transferability.

For constrained eco-routing, the problem is typically formulated as the resource-constrained shortest path problem,
known to be NP-complete [14, 37, 44]. Given the computational challenge inherent in the problem, solutions for the
constrained eco-routing problems often require significant runtime to solve. To compute the optimal solution, most
existing approaches rely on optimization-based techniques, which unfortunately entail significant computational
overhead and suffer from scalability limitations. Alternatively, some studies delve into search-based methods, yet many
rely on Dijkstra-based algorithms, leading to exhaustive searches throughout the solution space. Nonetheless, these
approaches commonly suffer from long runtime. On the contrary, another category of research often trades-off the
solution quality for faster computation. These algorithms typically find approximate solutions and expedite query
processing by relaxing constraints or utilizing approximate energy consumption values. It is crucial to assess the path
quality of these approximate techniques to determine if the benefits, such as faster processing times, are worthwhile.
Table 4 in the Supplementary Material provides a summary of the advantages and disadvantages of different routing
approaches used in previous research.

4 CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Eco-friendly navigation has received significant research attention in the last decade. Recently, the popularity of electric
vehicles has been increasing, and many countries are moving towards net zero emissions. Eco-friendly routing has
already shown promising results in real-world deployment [1], but many areas remain out of focus. Based on the
review of eco-routing algorithms in Section 3, this section discusses the challenges and future works that eco-routing
algorithms present, emphasizing what it will take to make eco-friendly navigation efficient, sustainable, and practical.
Section 4.1 discusses challenges associated with data availability and the quality of the data. Section 4.2 highlights
possible directions for improving route quality. Section 4.3 covers issues and future directions related to routing
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effectiveness. Section 4.4 discusses important variants of eco-routing queries. Looking at the bigger picture, we will
discuss the eco-routing problem at a citywide scale with applications in urban planning in Section 4.5.

4.1 Data Availability andQuality

To compute eco-friendly routes accurately, access to real-world data such as vehicle characteristics, real-time traffic,
road network structures and weather data is crucial. However, obtaining such data is often challenging, which poses a
key hurdle for research in this field. While real-world maps and weather data are easily accessible from sources like
OpenStreetMap and OpenWeather, datasets related to real-time or historical traffic information and vehicle/driver
characteristics are not as readily available. Researchers working in this area often augment their models with additional
data, such as real-time traffic information [116, 137, 145] and vehicle-to-vehicle communication details [51, 202, 221, 222],
to improve predictive accuracy. Unfortunately, much of this supplementary data is not publicly available, making
replication or expansion of these studies difficult for other researchers. The process of collecting such data is resource-
intensive and time-consuming, presenting practical challenges. Another significant challenge is data quality; inaccurate
or outdated data can lead to suboptimal route recommendations, undermining the core objective. Data can be of
poor quality due to various reasons, including errors in data collection or entry, incomplete or missing data, outdated
information, and inconsistencies in data format or structure [138]. Additionally, factors such as environmental conditions,
sensor malfunctions, and human errors can contribute to data inaccuracies. These challenges highlight the importance
of implementing robust quality control measures to ensure data reliability and usefulness for eco-routing research.

To overcome data availability and quality challenges in eco-routing research, collaborative efforts are the key. This
includes promoting data sharing among organizations and researchers, establishing standardized protocols for data
collection and sharing, and supporting open-data initiatives. Stringent quality control measures should be implemented
to ensure data accuracy. It is essential to implement robust data validation and cleaning processes. This includes
identifying and correcting errors, filling in missing data, and ensuring consistency in data format and structure.
Additionally, regular updates and maintenance of datasets can help prevent data from becoming outdated, ensuring that
eco-routing algorithms are based on reliable and up-to-date information. Additionally, funding for research projects
focusing on data collection and maintenance, as well as the development of data aggregation platforms, can further
facilitate access to high-quality datasets for eco-routing research.

4.2 Improving RouteQuality

To accurately estimate energy consumption and emissions, the state-of-the-art estimation models require a detailed
mobility profile of the vehicle along a route [228] including acceleration/deceleration and idling time. Such a profile is
among the most critical factors affecting energy consumption and emissions [13]. However, most existing techniques
that aim to find eco-routes use simplistic graph representation by assigning each road segment of the road network
with an average speed or average fuel consumption along the road, ignoring detailed mobility profiles and driving
behavior (e.g., aggressive or moderate) altogether. As noted in [89], this simplistic assumption returns sub-optimal route
choices because such a representation fails to capture driving behaviors and detailed mobility profiles of the candidate
routes, resulting in poor quality estimates (up to 42% inaccurate [89]). Besides, continuous monitoring of mobility
information may be a privacy concern to many users. Additionally, many existing techniques employ a one-size-fits-all
approach, ignoring different vehicles (e.g., truck vs. car) and driver’s behaviors (e.g., aggressive vs. calm). Consequently,
these approaches might recommend identical routes for diverse vehicles and drivers, which is suboptimal as the most
environmentally friendly route can vary depending on the vehicle type and/or driver characteristics [152].
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4.3 Efficient Route Computation

As discussed in Section 3.3, almost all existing works rely on basic search-based algorithms such as A*-search or
Dijkstra’s algorithm to compute the path with the lowest energy consumption or emissions. A major issue with these
algorithms is that they are not suitable for large graphs such as road networks as it may take several seconds for these
algorithms to answer a single shortest path query [209]. Therefore, these approaches are unsuitable for large-scale
deployment in real-world navigation systems that need to compute tens of thousands of routes per second [209]. As
discussed in Section 4.2, high-quality energy/emission estimates require detailed mobility profiles of the vehicles, which
necessitate advanced graph representations because the traditional road network graphs cannot effectively capture the
mobility profiles. Unfortunately, the existing efficient path planning techniques (e.g., pruned highway labeling, G-tree,
contraction hierarchies, etc.) [4] cannot be applied or trivially extended for these advanced graph representations.

Besides, a large body of work has focused on developing routing algorithms that build indexes on the graph in a
pre-processing phase and significantly improve the query performance, e.g., contraction hierarchies [103, 180], hub-
labeling [4, 16, 139], etc. However, these more efficient algorithms are not typically suitable for eco-routing because the
energy consumption is generally computed on-the-fly and, therefore, pre-processing may not be possible. An exciting
direction for future work is to design new data modeling, indexing, and query processing techniques to efficiently
compute eco-routes while considering detailed mobility profiles, driving behaviors, and vehicle types (challenges
discussed in Section 4.2). Developing innovative indexing and query processing methods is crucial for integrating
intricate mobility profiles to precisely predict fuel consumption and emissions while efficiently computing eco-friendly
routes. It is imperative that these indexes are capable of efficiently handling dynamic updates in underlying data, such
as real-time traffic updates.

4.4 Advanced Eco-Friendly RoutingQueries

All the works discussed above mainly focus on finding the most eco-friendly route for a given source and destination.
However, modern navigation systems provide many advanced routing-related services (such as trip planning, diverse
route recommendation and points-of-interest search) while mainly focusing on minimizing travel time or distance.
There is a need to develop techniques to provide eco-friendly alternatives to such services, i.e., minimizing energy
consumption. Next, we discuss some advanced eco-friendly queries that need to be studied.
Eco-friendly Trip Planning. In a trip planning query [179, 183], a user needs to visit multiple locations, and the goal
is to find a route that minimizes the total cost (e.g., travel time, energy consumption, distance, etc.). For example, a
delivery truck may need to deliver multiple parcels, or a shared autonomous vehicle may need to pick up and drop
several people from/at different locations [190]. Future works should address the eco-friendly trip planning query,
which aims to minimize the total energy consumption or emissions.
Diverse Eco-friendly Routes. A user (or an autonomous vehicle) may want to compare multiple routes based on
traveling time, energy consumption, emissions, and distance before choosing a route. Future works should design
efficient techniques to report a set of meaningful routes that are eco-friendly and diverse (i.e., are significantly different
from each other in terms of the path overlap).
Eco-friendly POI Selection. Searching for nearby points of interest (POIs) is needed in many real-world applications.
A range query returns all POIs within a given distance from a user’s location. A 𝑘-nearest neighbor (kNN) query
retrieves the 𝑘 closest POIs for a user [3]. Future works should develop efficient algorithms for 𝑘NN and range queries
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by considering energy consumption or emissions instead of distance, e.g., finding a nearby library that requires the
lowest energy consumption to travel there.
Personalized Eco-routing.Most of the existing eco-routing algorithms try to optimize well-defined objective functions
such as minimising energy consumption while satisfying certain constraints. However, users typically have certain
preferences (e.g., avoiding certain types of routes) and such users are likely to take recommended routes that meet their
preferences. With advances in machine learning algorithms and availability of large-scale historical trajectory datasets,
there is an opportunity to recommend more personalized routes to the users. For example, an eco-routing algorithm
may learn the driver’s preferences, driving behavior, or the roads’ dynamics to suggest personalized eco-routes based on
the learned information. Techniques such as reinforcement learning [124] used for robots or video game agents might
be interesting to be explored in eco-friendly navigation. Recently, machine learning-based approaches are changing
how we build systems, e.g., learned index [130].

4.5 Citywide Eco-Friendly Navigation and Urban Planning

Most studies are based on vehicles choosing routes that minimize their energy consumption. The techniques developed
for eco-friendly navigation for individual vehicles may not be suitable for selecting routes for a large population because
these may lead to traffic congestion (e.g., as a result of recommending similar routes to a large number of users or
autonomous vehicles), resulting in overall higher energy consumption and emissions [184]. Instead of treating each
routing query individually, researchers should design techniques that consider a large number of routing queries and aim
to minimize the overall energy consumption/emissions (aka system-optimal eco-routing). System-optimal eco-routing
is a fascinating area for future research. Such a study will help us better understand the effects on eco-routing systems’
performance. It should also address the personal preferences of different users, e.g., some users prefer fastest routes
whereas others may prefer the most eco-friendly routes or the time-constrained eco-friendly routes, etc. According
to [26], system optimal routing techniques reduce the trade-off between emissions and travel time.

Besides, researchers should investigate the impact of eco-friendly navigation adaptation (i.e., the percentage of the
population using eco-friendly routes) on overall energy consumption, emissions, and traffic density on different road
segments. It will help identify potentially problematic areas (e.g., roads with unusually high emissions). Furthermore,
future studies should include how a change in the road network (e.g., adding/closing a lane or a road) affects the overall
traffic, energy consumption, and emissions. U.S. National Highway Traffic Safety Administration reported [195] that
53.1% of traffic-crossing accidents occur with left turns (equivalent to right turns in countries with left-hand traffic),
compared to only 5.7% involving right turns. Eco-friendly navigation could affect left turns for right-hand traffic (and
vice versa) and average vehicle speed. Thus, exploring its impact on road safety is an intriguing area for future research.

5 CONCLUSION

This paper presents a systematic and comprehensive literature review on routing approaches for eco-friendly routing
applications. Several different taxonomies are presented to categorize eco-friendly routing techniques. The review
covers most of the significant aspects of eco-routing research, including energy consumption models, the impact of
vehicle types, traffic, and road conditions. All these aspects are analyzed under two broad categories: unconstrained eco
routes; and constrained eco routes. A large number of influential papers from different sub-domains of eco-routing
are systematically selected and reviewed. The existing techniques are reviewed, examined, and their summaries are
presented in a tabular format using the taxonomies presented in the paper. Finally, several major research challenges
are highlighted, and possible future directions for eco-routing research are outlined.
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A SUPPLEMENTARY MATERIAL

A.1 Scope of the Review

Figure 8 depicts an overview diagram showing the principal components of an eco-routing system, guiding us to the
structure of our review paper. This diagram presents three significant components of eco-routing and the interaction
among these components. Eco-routing requires vehicle parameters (e.g., engine specifications), traffic information, and
the details of the underlying road network. An energy consumption model is also needed which estimates the energy
consumption based on vehicle parameters, traffic, and road network information. While we briefly discuss the above
mentioned important aspects, the key focus of this survey is on eco-routing algorithms that find an eco-friendly route
for a given origin-destination pair by taking input from the energy consumption models, road network, and traffic.

User Input 
(e.g., Source, Destination, 

Constraints, etc.)

Road Network Characteristics
(Section 3.5)

Vehicle Parameters
(Section 3.3)

Traffic  
(Section 3.4)

Energy Consumption Models 
(Section 3.1)

Eco-routing Problems and Algorithms
(Sections 3.2 and 4)

Eco Route

Fig. 8. Overview of eco-friendly navigation system and scope of this survey.

A.2 Review Methodology

We used the systematic literature review (SLR) approach [240, 244] to select the relevant state-of-the-art research
reviewed in this survey. The digital libraries used for searching the relevant papers were: ACM Digital Library (http:
//portal.acm.org), IEEE Digital Library (http://ieeexplore.ieee.org), ISI Web of Science (http://www.isiknowledge.com),
Science@Direct (http://www.sciencedirect.com), Scopus (http://www.scopus.com), Springer Link (http://link.springer.
com) and TRID database (https://trid.trb.org/). We used the following search string where * indicates a wildcard (e.g.,
“rout*” matches “routing”, “route”, “routes”, etc.):

"eco rout*" OR "eco paths" OR "eco-friendly rout*" OR "eco-friendly paths" OR "fuel efficient

rout*" OR "fuel efficient paths" OR "fuel optimal rout*" OR "fuel optimal paths".

We also manually added 67 papers from Google Scholar (https://scholar.google.com) using a similar search method.
In total, we obtained 2494 articles (see Fig. 9). After removing the duplicates, we were left with 1675 papers. We excluded
the papers that were published before 2010. We screened the titles and abstracts of the remaining 511 papers and
excluded the papers using the following two criteria: 1) if a paper does not study eco-routing in a road network, we
excluded the paper (e.g., some papers studied Internet routing); 2) we only consider the studies that discuss routing
techniques (not just focusing on the energy consumption models) and demonstrate the efficacy using an experimental
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Additional articles identified through search at Google Scholar
(n = 67)

Total articles identified
(n = 2494)

Articles identified through database searching
(n = 2427)

ACM Digital Library
128

IEEE Digital Library
202

Springer Link
532

ISI Web of Science
446

Science@Direct
253

Scopus
576

TRID Database
290

Articles after duplicate filtering
(n = 1675)

Duplicates Removal

Articles left after exclusion
(n = 511)

Exclusion Conditions

Articles covered in this review
(n = 76)

Screening based on Titles & Abstracts

Duplicate articles excluded
(n = 819)

Articles excluded
(n = 1164)

Articles excluded
(n = 435)

Outside of scope

Fig. 9. System Literature Review (SLR) flow diagram.

study. This left us with 76 papers which we review in this survey. Fig. 10 shows the distribution of these papers for
different years.

A.3 Additional Figures and Tables
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Fig. 10. Distribution of papers reviewed in this systematic literature review.

Factors affecting
energy consumption

Examples
Percentage
(%) of effects

References

Travel Related Travel distance, travel time etc.
18% to 23% [10]
14% to 41% [236]

8.73% to 42.15% [30]
Weather Related Temperature, humidity, wind etc. up to 1% [228]

Vehicle Related Engine, loading, vehicle speed and acceleration, transmission etc.
Most important factor

(percentage not available)
[35]

Traffic Related Vehicle-to vehicle interaction, traffic signal, traffic incidents etc.
22% [242]
25% [241]
47% [230]

Roadway Related Grade, curvature, type & roughness etc.

3.5% [237]
5% to 7.04% [239]

5.5% [238]
15% to 20% [233]
7% to 26% [234]

Driver Related Driver behavior, gear selection, idle time etc.

4.35% [245]
6% [232]
20% [235]

up to 25% [243]
27% [234]

30% to 40% [231]
up to 35% [89]

Table 3. Summary of key factors affecting energy consumption. Here “Percentage of effects” shows how significant a factor’s influence
is on energy consumption. The table is an enriched version of information presented in [228].
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Fig. 11. Different types of energy consumption models and their levels of transparency. The figure is adapted from Zhou et al. [228].

Routing Algorithm Advantages Disadvantages

Dijkstra-based approaches • Easy to implement. • Slow runtime.

• Easy to adapt to other applications. • Large search space.

• Online algorithm, supports real-time update.

A*-based approaches • Faster runtime than Dijkstra’s algorithm. • Slower than advanced index-based algorithms

• Easy to adapt to other applications. • Application specific heuristics needs to be designed.

• Online algorithm, supports real-time update. • Poorly designed heuristic may worsen performance.

Bellman Ford-based approaches • Can handle negative edge weights edge-weight. • Slower than both Dijkstra’s and A* algorithms.

• Easy to adapt to other applications. • Real-world benefits of handling negative weights at
the cost of higher computation cost not clear

• Online algorithm, supports real-time update.

Optimization-based approaches • Typically high accuracy. • Poor scalability in terms of network size.

• Can utilize off-the-shelf solvers to solve the prob-
lem.

• Require additional knowledge for mathematical mod-
elling.

Feedback-based approaches • High accuracy. • Vehicles need to be equipped with sensors.

• Involve real-time communication. • Require a large number of participating vehicles.

Learning-based approaches • Adapt well to real-time traffic conditions. • Require the collection of large data from previous trips.

• Data dependency and limited transferability.

Approximate-based approaches • Typically fast runtime. • Potentially low accuracy.

• Easy to implement.

• Allow trade-offs between quality and runtime.

Table 4. Advantages and Disadvantages of the key routing algorithms used in the previous works
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