
Diverse Shortest Paths in Game Maps: A
Comparative User Study and Experiments

Lingxiao Li‡, Muhammad Aamir Cheema‡, Mohammed Eunus Ali§,
Hua Lu†, Huan Li∗

‡Faculty of Information Technology, Monash University, Australia,
§Bangladesh University of Engineering and Technology, Bangladesh

†Department of People and Technology, Roskilde University, Denmark
∗Department of Computer Science, Aalborg University, Denmark

‡{lingxiao.li, aamir.cheema}@monash.edu, §eunus@cse.buet.ac.bd,
†luhua@ruc.dk, ∗lihuan@cs.aau.dk

Abstract. Computing diverse shortest paths requires finding a set of k
alternative paths (including the shortest path) between a given source s
and a target t. Intuitively, these paths should be significantly different
from each other and meaningful/natural (e.g., must not contain loops or
unnecessary detours). While finding diverse shortest paths (also called
alternative paths) in road networks has been extensively studied, to the
best of our knowledge, we are the first to formally study alternative
pathfinding in game maps which are typically represented as Euclidean
planes containing polygonal obstacles. First, we adapt the existing tech-
niques designed for road networks to find alternative paths in the game
maps. Then, we design a web-based system that allows the users to vi-
sualise the alternative paths generated by these existing approaches in
different maps. Finally, we use this web-based system to conduct a user
study that shows that the existing road network approaches generate
high-quality alternative paths when adapted for the game maps. Fur-
thermore, we also evaluate the quality of alternative paths returned by
existing approaches using some well-known quantitative measures on a
widely used game maps benchmark.

Keywords: Diverse shortest paths · Alternative pathfinding · Game
maps

1 Introduction

Given a source s and a target t, a shortest path query requires finding the
path from s to t with the minimal total cost. Finding shortest paths is a very
well-studied problem and numerous techniques exist to find shortest paths in
different settings such as in road networks [1], general graphs (i.e., social net-
works) [14], indoor venues [3], game maps [7] etc. In many applications, it is
desirable to return not only the shortest path to the users/agents but also some
alternative paths so that they can choose a path of their choice. Intuitively, these
alternative paths must be short and sufficiently different from each other (i.e.,

diverse). Modern navigation systems such as Google Maps return several paths
from source to target and the user can choose a path of their choice to travel on.

Inspired by the applications, computing alternative paths in road networks
has received significant research attention, e.g., see [13,8,16] and referenes therein.
However, to the best of our knowledge, computing alternative paths in game
maps has received no research attention despite its applications. Typically game
characters take shortest paths to reach the target location. However, in many
cases, it is desirable to have more than one paths for the characters to choose
from. For example, in real-time strategy (RTS) games, if the opponent character
always takes the shortest path to the target, their movement/plan may become
predictable. Therefore, it may be better to compute alternative paths and ran-
domly assign one of the alternative paths to the character. Many RTS games
allow the users to choose a waypoint to allow them choosing a path different
from the shortest path. In such games, the users may be shown several alter-
native paths and asked to select a path of their choice. Computing alternative
paths also has applications in indoor venues which are also typically modeled as
Euclidean plane containing obstacles. For example, an indoor navigation system
may show multiple alternative paths to the target location so that the user can
choose a path of their choice. Figure 1 shows two examples where four alternative
paths are reported on two different game maps.

(a) Warcraft III (b) Baldurs Gate II

Fig. 1. Four alternative paths on two different game maps.

Although some open-source game development projects1 have included sup-
port for computing alternative paths in game maps, the efficiency and effective-

1 For example, see a game development project with Unity3D at https://

arongranberg.com/astar/docs/alternativepath.html

https://arongranberg.com/astar/docs/alternativepath.html
https://arongranberg.com/astar/docs/alternativepath.html

ness of the proposed alternative pathfinding algorithms are not clear. In this
paper, we fill this gap and formally study alternative pathfinding in game maps.
We make the following contributions.

To the best of our knowledge, we are the first to study alternative pathfinding
in game maps. First, we adapt some of the most well-known techniques for com-
puting alternative paths on road networks (namely Penalty [2,4,11], Plateaus [9]
and Dissimilarity [6,15]) for the game maps. However, it is not clear whether
these techniques generate alternative paths of good quality when extended for
the game maps. To this end, we created a web-based demonstration system and
conducted a user-study on 9 diverse game maps selected from a widely used
game maps benchmark. In total, we received 472 responses and the user study
shows that the three approaches generate high-quality alternative paths in game
maps as perceived by the users. We have made the source code2 of the web-
based demonstration system publicly available so that it can be reused and/or
extended as needed. Furthermore, we also evaluate the quality of alternative
paths returned by these algorithms on a widely used game maps benchmark
using some well-known quantitative measures such as path similarity, bounded
stretch and local optimality [10]. Our experimental study shows the paths re-
turned by the existing approaches are comparable to each other in terms of
quality metrics. However, the results show that the computation cost of these
approaches is up to two orders of magnitude higher than the computation cost of
the state-of-the-art shortest path algorithm, Polyanya [7], which computes only
the shortest path, i.e., the overhead to compute alternative path is too high.
Therefore, as a future work, there is a need for developing efficient techniques
to compute diverse shortest paths in game maps.

2 Preliminaries

2.1 Problem Formulation

We assume a 2D Euclidean plane containing a set of polygonal obstacles. A
convex vertex is a vertex that is located at a convex corner of the polygon.
A non-convex vertex is located at a concave corner. We use V to denote
the set of all convex vertices in the plane. Two points are visible from each
other (also called co-visible) if there is a straight line between the two points
not passing through any obstacle. A path P between a source s and a target
t is an ordered set of points ⟨p1,p2, · · · , pn⟩ such that, for each pi (i < n), pi
and pi+1 are co-visible where p1 = s and pn = t. Length of a path P is the
cumulative Euclidean distance between every successive pair of points, denoted
as |P |, i.e., |P | =

∑k−1
i=1 EDist(pi, pi+1) where EDist(x, y) is the Euclidean

distance between x and y. The shortest path sp(s, t) is a path between s and t
with the minimum length. The shortest distance between s and t is denoted as
d(s, t), i.e., d(s, t) = |sp(s, t)|.

2 https://bitbucket.org/lingxiao29/customized/src/master/

https://bitbucket.org/lingxiao29/customized/src/master/

Given a positive integer k, we are interested in finding k alternative paths
(including the shortest path sp(s, t)) between s and t such that each alterna-
tive path is no longer than d(s, t) × ϵ where ϵ ≥ 1 is a user-defined parameter.
Intuitively, the k alternative paths must be diverse (e.g., should have small over-
lap with each other) and each path must be a “reasonable” path, e.g., should
not contain unnecessary detours and loops etc. Diversity can be quantified by
defining a similarity function based on the overlap between paths and requiring
the paths to have similarity with each other less than a given threshold. The
previous works in road networks (e.g., see [10]) have defined several measures to
quantify whether a set of alternative paths is “reasonable” or not. We formally
define these measures in the Experiments section.

2.2 Related Work

While finding shortest paths in game maps has been extensively studied (e.g.,
see [7,18] and references therein), alternative pathfinding has only been stud-
ied in road networks. Below, we briefly describe three of the most popular ap-
proaches to compute alternative paths in road networks (we assume undirected
road networks for simplicity).
Penalty: This approach [2,4,11] iteratively computes the shortest paths from s
to t and, after each iteration, it applies a penalty to each edge on the shortest
path found in the previous iteration by increasing its edge weight by a certain
penalty factor (e.g., by multiplying the current edge weight with 1.5). Since the
edge weights on the shortest path are increased, the approach is likely to choose
a significantly different shortest path in the next iteration. The algorithm stops
when k unique paths are found by the algorithm or when the length of the
shortest path found in this iteration is longer than d(s, t)× ϵ.
Plateaus: This approach [9] was designed by Cotares Limited for their rout-
ing engine Choice Routing. First, two shortest path trees Ts and Tt are com-
puted rooted at s and t, respectively. Then, the two tree are joined and com-
mon branches in the two trees are found. Each common branch is called a
plateau. More formally, given a branch ⟨s, · · · , u1, u2, · · · , un, · · · , y⟩ in Ts and a
branch ⟨t, · · ·un, un−1, · · · , u1, · · · , x⟩ in Tt, the common part of the two branches
⟨u1, · · · , un⟩ is a plateau, denoted as pl(u1, un). Note that the shortest path be-
tween s and t is a plateau with length d(s, t). Let pl(u, v) be a plateau such that
u is the end closer to s and v is the end closer to t. The plateau is used to obtain
an alternative path sp(s, u) ⊕ pl(u, v) ⊕ sp(v, t) where ⊕ is the concatenation
operation. It was observed in [9] that longer plateaus typically generate better
alternative paths. Thus, the algorithm selects k longest plateaus and generates
alternative paths for each of the plateaus. We show an example of how Plateaus
computes alternative paths in game maps in the next subsection.
Dissimilarity: Techniques in this category specifically define a function that
computes dissimilarity between two paths. Given a dissimilarity threshold θ, the
goal is to return the shortest alternative paths such that the dissimilarity between
any pair of returned paths is at least θ. It was shown that this problem is NP-
hard [6]. Therefore, several approximate algorithms [6,15] have been proposed

Fig. 2. Three alternative paths generated by Plateaus are ⟨s, I,G,H, t⟩,
⟨s,K,C,B,E,H, t⟩ and ⟨s,K,C,A, D, J, t⟩ with lengths 88, 92 and 100, respec-
tively.

in the past. Below, we describe an algorithm [5] which was shown in [13] to
generate high-quality alternative paths in road networks.

For a vertex v on the road network, a via-path passing through v is sp(s, v)⊕
sp(v, t). Similar to the Plateaus approach, two shortest path trees Ts and Tt are
computed and d(s, v) and d(v, t) are stored for each vertex v on the trees. Given
these trees, the via-paths and their lengths can be efficiently computed. The
algorithm iteratively accesses vertices on the road network in ascending order
of the lengths of their via-paths. An accessed via-path is added to the set of
alternative paths if its dissimilarity to the already added alternative paths is at
least θ. The algorithm stops when k alternative paths are found or when the
current via-path is longer than d(s, t)× ϵ.

3 Adapting Existing Techniques for Game Maps

We adapt Penalty, Dissimilarity and Plateaus for the game maps as follows. We
create a visibility graph G = {V,E} where V is the set of convex vertices in the
game map and E is the set of edges connecting each pair of co-visible vertices
(u, v) with edge weight corresponding to the Euclidean distance between them
EDist(u, v). For a given query, s and t are added to G by adding edges between s
(resp. t) and the vertices visible from s (resp. t). Consider the example of Figure 2
containing three grey polygonal obstacles. The visibility graph G consists of all
the edges shown in the figure. Once G is constructed, each of the approach
described earlier can then be applied on G to generate the alternative paths.
We prune every non-taut path explored by these approaches. A taut path is a
path which, when treated as a string, cannot be made “tighter” by pulling on
its ends [17], e.g., the path ⟨s, I, F,G⟩ is non-taut because string-pulling results

in a shorter path ⟨s, I,G⟩. We use Dijkstra’s algorithm to compute the shortest
path trees.

Example 1. Figure 2 shows an example of the paths generated by Plateaus. The
convex vertices are A to K. The source and target are connected to their re-
spective visible convex vertices (I and K for s and H and J for t). Plateaus
then computes two shortest path trees Ts rooted at s (see the tree shown in
blue edges) and Tt rooted at t (see the pink edges shown in broken lines). The
common branches in the two trees are the plateaus. The three longest plateaus
are ⟨s, I,G,H, t⟩, ⟨K,C,B,E⟩ and ⟨D,J⟩ with lengths 88, 47 and 16, respec-
tively. Thus, three alternative paths are generated connecting s and t to the end
of each plateau closer to them. The three alternative paths are ⟨s, I,G,H, t⟩,
⟨s,K,C,B,E,H, t⟩ and ⟨s,K,C,A,D, J, t⟩ with lengths 88, 92 and 100, respec-
tively.

4 User Study

A recent work [13] presented a user study conducted on Melbourne, Dhaka and
Copenhagen road networks which shows that Penalty, Dissimilarity and Plateaus
generate alternative paths comparable to those generated by Google Maps. To
compute alternative paths in game maps, we adapt these existing techniques
originally designed for road networks as described in the previous section. How-
ever, the first question we ask ourselves is whether these techniques are able
to generate high-quality alternative paths in game maps? To answer this, we
conducted a user study and present the details in this section.

Based on our previous work [12], we developed a web-based system containing
9 diverse game maps selected from a widely used benchmark3. We created a
webpage4 containing the instructions for the participants and the links to the
web-based system. The participants were asked to complete two types of surveys:

– Pre-selected: They were shown 3 pairs of pre-selected source-target pairs
for each of the 9 game maps.

– User-selected: For each of the 9 maps, the participants could select any
source-target pair of their choice by clicking on the map (they could select
as many source-target pairs as they wanted but at least one for each map).

Once the source and target are selected, the system generates up to 4 alter-
native paths by each approach which can be viewed by clicking the radio button
next to the approach’s name. In the system, Plateaus, Dissmilarity and Penalty
are named A, B and C, respectively, to avoid any potential preconceived biases.
The participants were asked to enter a rating for each approach from 1-5 (higher
the better). The participants were given a brief background on the alternative
paths in road networks and game maps along with some applications. They were

3 https://movingai.com/benchmarks/grids.html
4 http://aamircheema.com/paths_games/

https://movingai.com/benchmarks/grids.html
http://aamircheema.com/paths_games/

asked to rate the alternative paths generated by each approach based on how
good they thought the paths generated by the approach were considering that
the alternative routes should be significantly different from each other but mean-
ingful/natural. People are used to see alternative paths in road networks (due to
popular navigation applications), but they most likely have not seen alternative
paths in game maps. Therefore, we selected the participants who were familiar
with computer games or had research background either in pathfinding on game
maps or alternative pathfinding in road networks.

#Responses
Average Rating

Plateaus Dissimilarity Penalty

All 472 4.028 3.998 3.852

Pre-selected 243 4.016 4.025 3.938

User-selected 229 4.039 3.969 3.760

Table 1. Results of the user study: Average rating, average and maximum Sim(T),
and average path length for Plateaus, Dissimilarity (shown as Dissim.) and Penalty.
Best values for each category are shown in bold.

Table 1 shows the results of the user study. We received 472 responses from 9
participants. The results indicate that, on average, the three approaches received
overall quite similar ratings and the participants rated the alternative paths
quite highly (rated at around 4 on a scale of 1-5). We also conducted one-
way repeated measures ANOVA test. Given a null hypothesis of no statistically
significant difference in mean ratings of the three approaches, the results suggest
that, at p < 0.05 level, there is no evidence that the null hypothesis is false, i.e.,
there is no credible evidence that the three approaches received different ratings
on average. Next, we present a detailed experimental study comparing these
approaches using some well-known quantitative measures.

5 Experiments

5.1 Settings

Similar to the existing studies on shortest pathfinding in game maps [7,18],
we conduct experiments on the widely used grid map benchmarks5, described
in [19]. On a total of 298 game maps, 67 maps from Dragon Age II (DA), 156
maps from Dragon Age Origins (DAO) and 75 maps from Baldur’s Gate II (BG)
(see Table 2).

We compare Plateaus, Dissimilarity and Penalty shown as Pla, Dissim, and
Pen in the results, respectively. For Penalty, the penalty factor was set to 1.4
and the dissimilarity threshold θ for Dissimilarity was set to 0.6 (we tried various
penalty factors and dissimilarity thresholds and chose the best values). ϵ was set
to 1.5 for each approach.

5 https://github.com/nathansttt/hog2

https://github.com/nathansttt/hog2

Game
Benchmark Stats

#Maps #Queries #Vertices #Convex Vertices

Dragon Age 2 (DA) 67 68K 1183 611

Dragon Age: Origins (DAO) 156 159K 1728 927

Baldurs Gate (BG) 75 93K 1295 668
Table 2. Benchmark stats include total number of maps and total number of queries
in each benchmark, and average number of vertices and convex vertices per map.

We also include Polyanya [7] (shown as Poly) which is the state-of-the-art
online algorithm for finding shortest paths in game maps. Although Polyanya
only finds the shortest path, we compare against it to show the additional costs
the alternative pathfinding algorithms pay to generate the alternative paths. We
use the implementation of Polyanya provided by its authors6. For all algorithms
except Polyanya, we vary k from 1 to 5 and the default value of k is 3.

5.2 Evaluation Measures

We evaluate the algorithms considering query processing time and quality of the
alternative paths returned. To evaluate the quality of a set of alternative paths
P, we use bounded stretch, local optimality and similarity defined below.

Let P = ⟨p1, p2, · · · , pn⟩ be an alternative path between s and t such that
p1 = s, pn = t, each pi (1 < i < n) is a vertex of an obstacle and for each pi
(i < n), pi and pi+1 are visible from each other. We use Px,y where x < y to
denote the subpath ⟨px, · · · , py⟩ of P and denote its length as dP (px, py), i.e.,

dP (px, py) =
∑y−1

i=x EDist(pi, pi+1). Hereafter, whenever we use x and y, assume
x < y.
Bounded Stretch [10]. Stretch of a path defines how long is the path com-
pared to the shortest path. Formally, stretch of a subpath Px,y is defined as
S(Px,y) = dP (px, py)/d(px, py). For an alternative path P , its bounded stretch
is the maximum stretch of any of its subpaths.

Given an alternative path P , we define its bounded stretch as follows.

BS(P) = max
∀(x,y)

dP (px, py)

d(px, py)
(1)

Consider a path P which has a bounded stretch 1.20, i.e., the maximum
stretch of any of its subpath is 1.20. This means that there is no subpath of P
which is more than 20% longer than the shortest distance between its end points.
Note that an alternative path P with smaller bounded stretch is better. Also, if
P is a shortest path, its bounded stretch is 1. Let P be a set of alternative paths
returned by an algorithm. The bounded stretch of P is the maximum bounded
stretch of any of the paths in P, i.e., BS(P) = max∀P∈PBS(P).
Local Optimality [10]. We say that a subpath Px,y is suboptimal if it is longer
than the shortest distance between px and py, i.e., d

P (px, py) > d(px, py). Given

6 https://bitbucket.org/mlcui1/polyanya

https://bitbucket.org/mlcui1/polyanya

an alternative path P between s and t, we use minL(P) to denote the length
of the shortest suboptimal subpath of P (if all subpaths are optimal, minL(P)
is assumed to be d(s, t)). Note that any subpath of P which is shorter than
minL(P) must be optimal. Thus, minL(P) is a measure of optimality. The local
optimality LO(P) normalises this measure w.r.t. the shortest distance d(s, t)
between s and t.

Given an alternative path P , we define its local optimality as follows.

LO(P) =
minL(P)

d(s, t)
= min

∀(x,y):dP (px,py)>d(px,py)

dP (px, py)

d(s, t)
(2)

Consider an alternative path P between s and t and assume that its shortest
suboptimal path has length 20 and d(s, t) = 100. Its local suboptimality is
20/100 = 0.2. This implies that every subpath of P which is shorter than 20% of
the shortest path between s and t is guaranteed to be an optimal path. A path
P with higher local optimality is better. Also, if P is a shortest path, its local
optimality is 1. Let P be a set of alternative paths returned by an algorithm.
The local optimality of P is LO(P) = min∀P∈PLO(P).
Similarity [13]. Similarity Sim(P) of a set of alternative paths P is

Sim(P) = max
∀(Pi,Pj)∈P×P:i̸=j

|Pi ∩ Pj |
|Pi ∪ Pj |

(3)

where |Pi ∩ Pj | (resp. |Pi ∪ Pj |) denotes the total length of the overlap (resp.
union) of two paths Pi and Pj .

In our experiments, we compute BS(P), LO(P) and Sim(P) for each query
and report average values. We also report the maximum of BS(P) and Sim(P)
across all queries which correspond to the worst-case bounded stretch and sim-
ilarity for an algorithm across all queries. We also report minimum of LO(P)
across all queries representing the worst-case for local optimality. If an approach
is only able to generate less than k alternative paths, it may get better quanti-
tative scores which is unfair (e.g., if an approach only returns the shortest path,
it will receive the best possible score). Therefore, we only consider the queries
where each approach generates exactly k alternative paths.

5.3 Results

Query runtimes: Figure 3 shows query runtimes for different algorithms on
DA, DAO and BG maps. Similar to the existing works on shortest pathfind-
ing [7,18], we sort the queries by the number of nodes expansion required by
the standard A* search to solve them (which is a proxy for how challenging a
query is) and the x-axis corresponds to the percentile ranks of queries in this
order. Figure 3 shows that Plateaus and Dissimilarity have almost the same
query times as they both need to generate two shortest path trees which is the
dominant cost. The penalty is more expensive as it needs to iteratively compute
the shortest paths until k unique paths have been found. Polyanya is about two
orders of magnitude faster than all three alternative pathfinding algorithms.

0 25 50 75 100
100

101

102

103

104

105

Av
er

ag
e

Ru
nt

im
e

(
s)

Dragon Age II (DA)

Poly
Pla

Pen
Dissim

(a) DA

0 25 50 75 100
100

101

102

103

104

105

Av
er

ag
e

Ru
nt

im
e

(
s)

Dragon Age Origins (DAO)

Poly
Pla

Pen
Dissim

(b) DAO

0 25 50 75 100
100

101

102

103

104

105

Av
er

ag
e

Ru
nt

im
e

(
s)

Baldur's Gate II (BG)

Poly
Pla

Pen
Dissim

(c) BG

Fig. 3. x-axis shows the percentile ranks of queries in number of node expansions
needed by A* search to solve them.

Varying K: Figures 4(a), 4(b) and 4(c) show the result for varying k for the
DA, DAO and BG maps, respectively. The cost of Plateaus and Dissimilarity do
not change with k because they compute forward and backward shortest path
trees regardless of the value of k which is the dominant cost. The cost of Penalty
increases with increasing k because the algorithm needs to compute the results
in at least k iterations. Polyanya was run only for k = 1 as it only generates the
shortest path.

1 2 3 4 5
100

101

102

103

104

105

Av
er

ag
e

Ru
nt

im
e

(
s)

Dragon Age II (DA)

Pla
Pen

Dissim
Poly

(a) DA

1 2 3 4 5
100

101

102

103

104

105

Av
er

ag
e

Ru
nt

im
e

(
s)

Dragon Age Origins (DAO)

Pla
Pen

Dissim
Poly

(b) DAO

1 2 3 4 5
100

101

102

103

104

105

Av
er

ag
e

Ru
nt

im
e

(
s)

Baldur's Gate II (BG)

Pla
Pen

Dissim
Poly

(c) BG

Fig. 4. Effect of varying k.

Quality of alternative paths: Table 3 evaluates the quality of alternative
paths generated by different algorithms. Regarding query runtimes, Plateaus and
Dissimilarity are about two times faster than the Penalty approach. However,
the Penalty method generates alternative paths with quality comparable to the
Dissimilarity approach and better than Plateaus. The average bounded stretch
of the Dissimilarity approach is better than Plateaus and Penalty. In terms of

average similarity, Penalty performs the best. However, Penalty performs quite
poorly in terms of the worst-case (i.e., max) similarity (with maximum similarity
around 0.9), whereas Dissimilarity guarantees that the maximum similarity is
no more than 0.4 (recall dissimilarity threshold θ = 0.6). Dissimilarity is com-
parable to Penalty, which outperforms the Plateaus in terms of local optimality.
Dissimilarity is the best approach in terms of average path length.

Algorithm
BS(P) Sim(P) LO(P)

Length
AVG MAX AVG MAX AVG MIN

DA

Dissimilarity 1.086 2.087 0.188 0.400 0.352 0.008 121.5

Plateau 1.216 3.335 0.232 0.882 0.261 0.008 125.4

Penalty 1.157 7.000 0.129 0.953 0.354 0.008 124.1

DAO

Dissimilarity 1.050 3.481 0.162 0.400 0.336 0.005 124.9

Plateau 1.207 6.859 0.184 0.931 0.190 0.005 132.7

Penalty 1.103 19.00 0.083 0.931 0.335 0.005 126.9

BG

Dissimilarity 1.092 2.903 0.136 0.400 0.342 0.009 282.1

Plateau 1.224 4.454 0.137 0.876 0.252 0.009 298.0

Penalty 1.088 5.333 0.089 0.831 0.343 0.009 286.7

Table 3. Quality of alternative paths on DA, DAO and BG maps. We show BS(P)
(smaller the better), Sim(P) (smaller the better), LO(P) (larger the better) and av-
erage path length (smaller the better). Best values for each column are shown in bold.

6 Conclusions and Future Work

We are the first to study alternative pathfinding in game maps. We adapt the
existing techniques designed for road networks to find alternative paths in game
maps. We present a user study conducted using a web-based system demon-
strating that the existing approaches are capable of generating high-quality al-
ternative paths in game maps. Furthermore, we also evaluate the quality of
alternative paths returned by existing approaches using some well-known quan-
titative measures on a widely used game maps benchmark. We also compared
the query processing costs of these algorithms with the state-of-the-art shortest
path algorithm, Polyanya. The results show that Polyanya is almost two orders
of magnitude faster than the existing alternative pathfinding techniques in terms
of the query processing times. This implies that the overhead paid by these al-
gorithms to compute alternative paths is quite high. Thus, there is a need to
develop techniques to efficiently compute diverse shortest paths in game maps.

Acknowledgements. Muhammad Aamir Cheema is supported by
ARC FT180100140.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling
algorithm for shortest paths in road networks. In: International Symposium on
Experimental Algorithms. Springer (2011)

2. Akgün, V., Erkut, E., Batta, R.: On finding dissimilar paths. European Journal of
Operational Research 121(2), 232–246 (2000)

3. Cheema, M.A.: Indoor location-based services: challenges and opportunities.
SIGSPATIAL Special 10(2), 10–17 (2018)

4. Chen, Y., Bell, M.G., Bogenberger, K.: Reliable pretrip multipath planning and
dynamic adaptation for a centralized road navigation system. IEEE Transactions
on Intelligent Transportation Systems (2007)

5. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U., Blumenthal, D.B.: Finding
k-dissimilar paths with minimum collective length. In: SIGSPATIAL (2018)

6. Chondrogiannis, T., Bouros, P., Gamper, J., Leser, U., Blumenthal, D.B.: Finding
k-shortest paths with limited overlap. The VLDB Journal pp. 1–25 (2020)

7. Cui, M., Harabor, D.D., Grastien, A.: Compromise-free pathfinding on a navigation
mesh. In: IJCAI. pp. 496–502 (2017)

8. Häcker, C., Bouros, P., Chondrogiannis, T., Althaus, E.: Most diverse near-shortest
paths. In: SIGSPATIAL. pp. 229–239 (2021)

9. Jones, A.H.: Method of and apparatus for generating routes (Aug 21 2012), uS
Patent 8,249,810

10. Kobitzsch, M.: An alternative approach to alternative routes: Hidar. In: European
Symposium on Algorithms. pp. 613–624. Springer (2013)

11. Kobitzsch, M., Radermacher, M., Schieferdecker, D.: Evolution and evaluation of
the penalty method for alternative graphs. In: ATMOS. vol. 33, pp. 94–107 (2013)

12. Li, L., Cheema, M.A.: Alternative pathfinding in game maps and indoor venues.
ICAPS (2021)

13. Li, L., Cheema, M.A., Lu, H., Ali, M.E., Toosi, A.N.: Comparing alternative route
planning techniques: A comparative user study on Melbourne, Dhaka and Copen-
hagen road networks. IEEE TKDE (2021)

14. Li, Y., Yiu, M.L., Kou, N.M., et al.: An experimental study on hub labeling based
shortest path algorithms. PVLDB 11(4), 445–457 (2017)

15. Liu, H., Jin, C., Yang, B., Zhou, A.: Finding top-k shortest paths with diversity.
IEEE Transactions on Knowledge and Data Engineering (2017)

16. Moghanni, A., Pascoal, M., Godinho, M.T.: Finding shortest and dissimilar paths.
International Transactions in Operational Research 29(3), 1573–1601 (2022)

17. Oh, S., Leong, H.W.: Edge n-level sparse visibility graphs: Fast optimal any-angle
pathfinding using hierarchical taut paths. In: SoCS. pp. 64–72 (2017)

18. Shen, B., Cheema, M.A., Harabor, D.D., Stuckey, P.J.: Euclidean pathfinding with
compressed path databases. In: IJCAI. pp. 4229–4235 (2021)

19. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Transactions on
Computational Intelligence and AI in Games 4(2), 144–148 (2012)

	Diverse Shortest Paths in Game Maps: A Comparative User Study and Experiments

