
Ultrafast Euclidean Shortest Path Computation using Hub Labeling

Jinchun Du, Bojie Shen, Muhammad Aamir Cheema
Faculty of Information Technology, Monash University, Melbourne, Australia

{jinchun.du, aamir.cheema, bojie.shen}@monash.edu

Abstract

Finding shortest paths in a Euclidean plane containing polyg-
onal obstacles is a well-studied problem motivated by a vari-
ety of real-world applications. The state-of-the-art algorithms
require finding obstacle corners visible to the source and tar-
get, and need to consider potentially a large number of candi-
date paths. This adversely affects their query processing cost.
We address these limitations by proposing a novel adapta-
tion of hub labeling which is the state-of-the-art approach for
shortest distance computation in road networks. Our experi-
mental study conducted on the widely used benchmark maps
shows that our approach is typically 1-2 orders of magnitude
faster than two state-of-the-art algorithms.

Introduction
Given a source s and a target t in a Euclidean plane con-
taining polygonal obstacles, we study Euclidean Shortest
Path Problem (ESPP) which is to compute the shortest ob-
stacle avoiding path between s and t. Due to its applica-
tions in robotics (Mac et al. 2016), indoor location-based
services (Cheema 2018) and computer games (Sturtevant
2012b), efficiently computing ESPP has been extensively
studied. Some of the most notable works include any-angle
pathfinding approaches such as Anya (Harabor et al. 2016),
navigation-mesh-based techniques such as Polyanya (Cui,
Harabor, and Grastien 2017), advanced visibility graph tech-
niques such as hierarchical sparse visibility graph (Oh and
Leong 2017), and the techniques based on distance oracles
such as End Point Search (EPS) (Shen et al. 2020).

EPS is the state-of-the-art ESPP algorithm and provides
very efficient query processing by exploiting a compressed
path database (CPD) (Botea 2011). However, as we explain
in the next section, it still requires Polyanya to find the ob-
stacle corners (i.e., vertices) visible from s and t, and needs
to consider |Vs| × |Vt| candidate paths where |Vs| and |Vt|
are the number of vertices visible from s and t, respectively.

We present an approach addressing the above-mentioned
limitations. Our approach utilises hub labeling (Abraham
et al. 2011) which computes a set of labels for each vertex in
a graph such that the shortest distance between any two ver-
tices can be computed efficiently (specifically, in time linear

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to the number of labels stored for the two vertices). Hub
labeling is the state-of-the-art approach for efficiently com-
puting shortest distances in graphs such as road networks (Li
et al. 2017) but it has not been previously used for solving
ESPP. Our experimental study shows that a straightforward
application of hub labeling for ESPP does not improve EPS
as the algorithm still needs to consider |Vs| × |Vt| candidate
paths. We overcome this limitation by a novel adaptation of
hub labeling and create labels for Euclidean plane to allow
efficient query processing. Below we provide an overview
of our approach called Euclidean Hub Labeling (EHL).

• During the preprocessing, we construct a visibility graph
on the convex corners/vertices of the polygonal obsta-
cles. Hub labels for each vertex in this graph are com-
puted. We superimpose a uniform grid on the Euclidean
plane and copy the labels of each vertex v onto each cell
c if c is visible from v. Several novel pruning rules are ap-
plied to significantly reduce the number of labels stored.

• During online query processing, we use the labels stored
in the grid cells cs and ct containing s and t, respectively.
These labels are joined in time linear in the number of la-
bels in the two cells and the shortest distance is obtained.
Additional auxiliary information stored in each label is
used to efficiently recover the shortest path.

We evaluate EHL using a variety of widely used grid
map benchmarks (Sturtevant 2012a) and compare against
Polyanya and EPS, the two state-of-the-art algorithms. Our
results indicate that EHL provides 1-2 orders of magnitude
faster query performance compared to Polyanya and EPS
at the expense of larger (but reasonable) preprocessing time
and memory. We also show that the grid size used by EHL
provides a trade-off between the preprocessing cost (build
time and memory) and query performance.

Preliminaries
A polygon representing an obstacle is defined by a set of
points called vertices. A convex vertex is a vertex that is
located at a convex corner of the polygon. A non-convex
vertex is located at a concave corner. A pair of points in the
plane are visible to each other (also called co-visible) iff a
straight line connecting them does not pass through any ob-
stacle. A path P between a source s and a target t is an
ordered set of points ⟨p1,p2, · · · , pn⟩ such that, for each

pi (i < n), pi and pi+1 are co-visible where p1 = s and
pn = t. The length of a path P is the cumulative Euclidean
distance between every successive pair of points, denoted as
|P|, i.e., |P| =

∑k−1
i=1 Edist(pi, pi+1) where Edist(x, y) is

the Euclidean distance between x and y. Given s and t in
a Euclidean plane containing polygonal obstacles, the Eu-
clidean Shortest Path Problem (ESPP) is to compute an
obstacle-avoiding path between s and t with the minimum
length, denoted as sp(s, t). The shortest distance between s
and t, denoted as d(s, t), is the length of the shortest path,
i.e., d(s, t) = |sp(s, t)|.

Related Work
Hub Labeling: Hub Labeling (Abraham et al. 2011) is the
state-of-the-art approach for computing shortest distances in
graphs such as road networks. Assume an undirected graph
G = (V,E) with vertices V (vertices are also called nodes
in this paper) and edges E ⊆ V ×V . Hub labeling computes
and stores, for each vertex vj ∈ V , a set of hub labels de-
noted as H(vj). Each hub label is a tuple (hi, dij) ∈ H(vj)
containing: (i) a hub vertex hi ∈ V ; and (ii) the shortest dis-
tance dij between the hub vertex hi and vj . The hub labels
in each H(vj) are kept sorted according to the hub vertices.
The hub labeling must satisfy the coverage property, i.e., for
every pair of reachable vertices vj ∈ V and vk ∈ V , H(vj)
and H(vk) must contain at least one hub vertex hi on the
shortest path from vj to vk. Thus, the shortest distance be-
tween any vs ∈ V and any vt ∈ V can be computed as:

d(vs, vt) = min
hi∈H(vs)∩H(vt)

(dis + dit) (1)

Computing the smallest hub labeling while ensuring the
coverage property is NP-hard (Cohen et al. 2003). There-
fore, heuristics are often used to compute hub labeling.

Computing Shortest Distance. The shortest distance be-
tween vs and vt can be calculated by Eq. (1) which only re-
quires a simple scan over the sorted label sets H(vs) and
H(vt). The complexity is O(|H(vs)| + |H(vt)|), where
|H(vj)| denotes the number of labels in H(vj).
Example 1. Table 1 shows hub labels for the graph in Fig-
ure 1. To compute d(E,G), the hub labels of E and G
are scanned and two common hub vertices A and B are
found. Here, d(E,A) + d(A,G) = 5.1 + 2 = 7.1 and
d(E,B)+d(B,G) = 3.5+2.8 = 6.3. Thus, d(E,G) = 6.3.

Computing Shortest Path. For a hub label (hi, dij) ∈
H(vj), we use sij to denote its successor – the first vertex
after vj on the shortest path from vj to hi. During the hub
labeling computation, the successor nodes are also stored in
the labels, i.e., (hi, dij , sij). To compute the path from vs to
vt, first the shortest distance is computed using Eq. (1) and
then the successor node sis in the label (hi, dis, sis) is used
to retrieve the first vertex on the shortest path. Then, the path
from sis to hi is recursively retrieved using the hub labels of
sis and hi until hi is reached. The path between vt and hi is
retrieved similarly.

Polyanya (Cui, Harabor, and Grastien 2017): Polyanya
is the state-of-the-art online algorithm for ESPP requir-
ing minimal preprocessing time and memory. It employs a

search similar to A* search on the navigation mesh which
divides the traversable area in the plane into a set of con-
vex traversable polygons. Each search node n is a tuple
n = (I, r) where r is the root of the search node and I is a
contiguous interval on an edge of the navigation mesh such
that I is completely visible from r. Polyanya prioritises the
search using f-values of nodes where f(n) = g(n) + h(n).
Here g(n) is the shortest distance from s to the root r of
the node n and h(n) is a lower-bound distance from r to the
target t passing through the interval I . When a search node
n = (I, r) is expanded, Polyanya generates its successors
n′ = (I ′, r′) by “pushing” the interval I away from r across
the face of adjacent traversable polygon in the navigation
mesh. Polyanya terminates when the target is expanded or
the open list is empty.

End Point Search (EPS) (Shen et al. 2022): EPS is the
state-of-the-art ESPP algorithm. It requires computing a
Compressed Path Database (CPD) (Botea 2011) during the
offline preprocessing. Assume a V × V table which records
the first move (i.e., the first vertex on the shortest path) from
every vi ∈ V to every vj ∈ V where V is the set of all
convex vertices in the plane. A CPD reduces the size of this
table by compressing each of its row using run-length encod-
ing (Strasser, Harabor, and Botea 2014). Given this CPD, the
first move from vi to vj can be extracted in O(log |r|) where
|r| is the size of the compressed row of vi. The shortest path
from vi to vj is computed by recursive first-move extractions
using the CPD until vj is reached. The cost of computing the
shortest path/distance using the CPD is O(P log |r|) where
P is the number of edges on the shortest path.

EPS adapts Polyanya to incrementally obtain convex ver-
tices visible from s and t denoted as Vs and Vt, respectively.
If s and t are not co-visible, the shortest distance between s
and t can be computed as follows.

d(s, t) = min
(vs,vt)∈Vs×Vt

Edist(s, vs)+d(vs, vt)+Edist(vt, t)

(2)
Here, d(vs, vt) is computed using the CPD. Once the

shortest distance is computed, the shortest path can be eas-
ily retrieved using the CPD. Eq. (2) requires exploring |Vs|×
|Vt| paths where |Vs| and |Vt| are the number of vertices vis-
ible from s and t, respectively. Thus, the worst-case cost for
EPS is O(|Vs| × |Vt| × P log |r|). EPS employs various ef-
fective pruning strategies and optimisations to improve the
performance. Despite this, the total number of first-move
extractions still remains considerably high, e.g., for queries
on the widely-used DAO benchmark, on average, Vs and Vt

contain around 16 vertices each and EPS requires over 400
CPD first-move extractions (see Table 2 in Appendix pro-
vided in the supplementary files). Unless clear by context,
we call this approach EPS-CPD hereafter.

EPS-HL. Our experimental study also considers EPS-
HL, a variant of EPS-CPD which uses hub labeling (HL)
instead of a CPD. Specifically, hub labels are constructed
on the convex vertices V , and d(vs, vt) in Eq. (2) is com-
puted using these labels instead of the CPD. Our implemen-
tation of EPS-HL employs all possible pruning rules and op-

timisations that are used by EPS-CPD. We show in experi-
ments that EPS-HL is slower than EPS-CPD indicating that
a straightforward application of hub labeling is not helpful.

Our Solution: Euclidean Hub Labeling (EHL)
Our solution consists of two phases: an offline preprocess-
ing; and an online query processing algorithm. In this sec-
tion, we present the basic ideas and, in the next section, we
discuss optimisations to improve the performance.

Offline Preprocessing
The preprocessing phase consists of five steps detailed
shortly. First, we use existing techniques to compute a visi-
bility graph and hub labeling on this graph (steps 1-2). Then,
we use these labels to compute Euclidean hub labeling for
the Euclidean plane (steps 3-5).

1) A visibility graph G = (V,E) is constructed where V
is the set of convex vertices and E consists of edges between
each pair of co-visible vertices. This is done by running a
Polyanya-like depth-first search for each v ∈ V as explained
in (Shen et al. 2020). Figure 1 shows the visibility graph for
the convex vertices (A to G) of the map shown in Figure 2.

2) Hub labels are computed on this visibility graph G.
Although any hub labeling approach can be used, we use
SHP (Li et al. 2017) which is among the state-of-the-art hub
labeling approaches for road networks. Table 1 shows hub
labeling for the visibility graph of the map in Figure 2. In
our implementation, we also store the successor node for
each hub label for efficient shortest path retrieval once the
distance has been computed. However, for the ease of illus-
tration, we only show (hi, dij) for each label in H(vj).

3) We superimpose a uniform grid covering the whole
map. The size of the grid is a parameter and we evaluate
its effect in our experiments. For each grid cell c, we store
a list Lc, called its visibility list, which consists of every
convex vertex v such that at least some part of c is visible
from v. For example, for the two cells cs and ct shown in
Figure 2, Lcs = {A,F,G} and Lct = {B,C,D,E}. In
the next section, we explain how to efficiently compute the
visibility lists using Polyanya-like search for each v ∈ V .

4) For each cell c, we create its labels (called via la-
bels) using its visibility list Lc. Specifically, for each vertex
vj ∈ Lc and for each hub label (hi, dij) ∈ H(vj), we insert
a via label hi:(vj , dij) in H(c). Intuitively, this label indi-
cates that the cell c is visible from a via vertex vj and there
is a potential path from c to the hub node hi via vj and the
distance between hi and vj is dij . Consider the vertex G and
its hub label (B, 2.8) ∈ H(G) (see Table 1). Since cs is visi-
ble from G, we insert a label B:(G, 2.8) in H(cs) indicating
that there is a path from cs to B via G and d(G,B) = 2.8.
Since the visibility list of cs is Lcs = {A,F,G}, the labels
of A, F and G from Table 1 are used to insert the following
via labels in cs: A:(A, 0), A:(F, 2.2), B:(F, 3.7), F :(F, 0),
A:(G, 2), B:(G, 2.8), F :(G, 1.9), and G:(G, 0).

5) Hub labels of a cell c may have several via labels con-
taining the same hub node, e.g., as noted above, the via
labels for cs contain three labels with A as the hub node.
We use V Lhi

(c) to denote the set of all via labels in c that

1.9 1.6

2.7

1

2.2

2.8

4.6

2.5

2.9
 F

 G

E D

B

 A

C

2

3.7

Figure 1: Visibility graph for the example in Figure 2

Vertex Hub labels
A (A, 0)
B (A, 1.6), (B, 0)
C (A, 6.2), (B, 4.6), (C, 0)
D (A, 4.1), (B, 2.5), (C, 2.7), (D, 0)
E (A, 5.1), (B, 3.5), (C, 2.9), (D, 1), (E, 0)
F (A, 2.2), (B, 3.7), (F, 0)
G (A, 2), (B, 2.8), (F, 1.9), (G,0)

Table 1: Hub labeling for the graph in Figure 1

have the same hub node hi. We use H(c) to denote the set
of unique hub nodes for labels stored in c. We sort H(c)
according to hub nodes hi to efficiently join the hub la-
bels of two different cells. Table 2 shows hub nodes and
via labels for both cs and ct, e.g., the hub nodes for cs
are H(cs) = {A,B, F,G} and the via labels for these hub
nodes are shown in the corresponding rows.

Most of the preprocessing steps can be easily parallelized.
Specifically, each of step 1 and step 3 can be parallelized be-
cause the Polyanya-like searches for each v ∈ V to construct
the visibility graph and visibility lists are independent. We
can also parallelize the labels computation for each cell c in
steps 4 and 5 because constructing the labels only requires
the hub labels computed at step 2 and the visibility list Lc.

Online Query Processing
We define via-distance vdist(p, vj , hi) as the length of the
shortest path between a point p and hi passing through
a convex vertex vj visible from p. Given a via label
hi:(vj , dij) ∈ V Lhi(c) and a point p ∈ c, if vj is visible
from p then vdist(p, vj , hi) = Edist(p, vj) + dij . If vj is
not visible from p, we assume vdist(p, vj , hi) = ∞. Given
a point p ∈ c and the via labels V Lhi(c), we define the min-
imum via-distance vdistmin(p, hi) between p and hi as:

vdistmin(p, hi) = min
hi:(vj ,dij)∈V Lhi

(c)
vdist(p, vj , hi) (3)

Example 2. Consider the via labels of A in H(cs) shown in
Table 2. vdist(s, F,A) = EDist(s, F) + d(F,A) = 2.6 +
2.2 = 4.8 and vdist(s,G,A) = EDist(s,G) + d(G,A) =
1 + 2 = 3. Since A is not visible from s, vdist(s,A,A) =
∞. Therefore, vdistmin(s,A) = vdist(s,G,A) = 3.

s

t

Cs

Ct

D E

K L M

2.53.15.5

1.9

1

2.6
A

B

C

F

G

HI

J

N O

P

S R Q

Figure 2: Euclidean plane with polygonal obstacles

H(cs) Via Labels V Lhi(cs)

A: (A, 0), (F, 2.2), (G, 2)
B: (F, 3.7), (G, 2.8)
F: (F, 0), (G, 1.9)
G: (G, 0)

H(ct) Via Labels V Lhi(ct)

A: (B, 1.6), (C, 6.2), (D, 4.1), (E, 5.1)
B: (B, 0), (C, 4.6), (D, 2.5), (E, 3.5)
C: (C, 0), (D, 2.7), (E, 2.9)
D: (D, 0), (E, 1)
E: (E, 0)

Table 2: Via labels for cs and ct shown in Figure 2

Similarly, it can be confirmed that vdistmin(t, A) =
vdist(t, B,A) = 7.1, vdistmin(s,B) = vdist(s,G,B) =
3.8 and vdistmin(t, B) = vdist(t, B,B) = 5.5.

Algorithm 1 shows the details of how to compute
vdistmin(p, hi). Note that we check whether vj and p are
co-visible only if Edist(p, vj) + dij is smaller than the cur-
rent vdistmin (because checking visibility is typically more
expensive). We explain how to efficiently check whether vj
is visible from p or not in the next section when we introduce
optimisations. Next, we explain how to compute d(s, t).

Let cs and ct be the grid cells containing s and t, re-
spectively. If s and t are visible to each other, d(s, t) =
Edist(s, t). Otherwise, d(s, t) can be computed as follows.

d(s, t) = min
hi∈H(cs)∩H(ct)

vdistmin(s, hi) + vdistmin(t, hi)

(4)
Algorithm 2 shows the details of our query processing al-

gorithm. It initializes dist, which corresponds to the short-
est distance found so far, to infinity. It returns d(s, t) =
Edist(s, t) if s and t are co-visible. Co-visibility can be ef-
ficiently checked by shooting a ray from s to t which we
implement on top of a navigation mesh (Kallmann and Ka-
padia 2014). Specifically, the ray starts from the polygon in
the mesh containing s and iteratively traverses the adjacent

Algorithm 1: Computing minimum via-distance
Input: a point p; V Lhi(c) where c is the cell containing p

1 vdistmin =∞;
2 for each hi:(vj , dij) ∈ V Lhi(c) do
3 if Edist(p, vj) + dij < vdistmin then
4 if vj is visible from p then
5 vdistmin = Edist(p, vj) + dij
6 return vdistmin;

Algorithm 2: Shortest Distance d(s, t) Computation
1 dist =∞;
2 if s and t are co-visible then
3 return Edist(s, t)
4 cs ← the cell that contains s; ct ← the cell that contains t
5 incrementally scan H(cs) and H(ct) to find all common

hub nodes H(cs) ∩H(ct)
6 for each hi ∈ H(cs) ∩H(ct) do
7 if vdistmin(s, hi) + vdistmin(t, hi) < dist then
8 dist = vdistmin(s, hi) + vdistmin(t, hi)
9 return dist

traversable polygons intersecting the ray until the ray either
enters an obstacle (i.e., t is not visible) or it hits t (i.e., t is
visible). If s and t are not co-visible, d(s, t) is computed us-
ing Eq. (4) by using the common hub nodes in H(cs) and
H(ct) which can be found similar to the merge phase of
the sort-merge join. Once d(s, t) is found, the shortest path
sp(s, t) can be retrieved using the successor nodes as de-
scribed earlier in Preliminaries.

Example 3. In our running example, H(cs) and H(ct) have
two common hub nodes A and B (see Table 2). When the
common hub node A is found, dist is updated to be dist =
vdistmin(s,A) + vdistmin(t, A) = 3 + 7.1 = 10.1. When
the common hub node B is accessed, dist is updated to be
dist = vdistmin(s,B)+vdistmin(t, B) = 3.8+5.5 = 9.3.
The algorithm returns d(s, t) = 9.3.

Theorem 1. Algorithm 2 returns the shortest distance
d(s, t).

Proof. If s and t are co-visible, our algorithm correctly
returns d(s, t) = Edist(s, t). Otherwise, let sp(s, t) be
⟨s, vs, · · · , vt, t⟩ where vs and vt are convex vertices visi-
ble from s and t, respectively. The shortest distance is then
Edist(s, vs) + d(vs, vt) +Edist(vt, t). Note that vs and vt
may correspond to the same vertex, i.e., d(vs, vt) = 0. Hub
labeling guarantees that the labels of vs and vt contain at
least one common hub node hi that is on the shortest path be-
tween vs and vt, i.e., (hi, dis) and (hi, dit). Thus, d(vs, vt)
can be computed using the hub labels of vs and vt, i.e.,
d(vs, vt) = d(vs, hi) + d(vt, hi) = dis + dit. Since at least
some part of the cells cs and ct are visible from vs and vt,
respectively, the via labels hi:(vs, dis) and hi:(vt, dit) are
inserted for cs and ct, respectively, during the preprocess-
ing. During query processing, these labels with common hub
node hi are found and dist is updated to be Edist(s, vs) +
dis+Edist(t, vs)+dit. Since dis+dit = d(vs, vt), we have

dist = Edist(s, vs) + d(vs, vt) + Edist(vt, t) = d(s, t).
Note that the proof holds when vs and vt correspond to
the same vertex denoted as vs/t for the rest of the proof.
This is because each vertex has a label containing itself as
a hub (i.e., vs/t has (vs/t, 0)) which is inserted to the via
labels of both cs and ct and the shortest distance d(s, t) =
Edist(s, vs/t) + 0 + Edist(vs/t, t) is returned.

Optimisations
Improving Preprocessing
The cost of our algorithm is directly proportional to the num-
ber of hub nodes and via labels for the cells cs and ct. Now,
we present several pruning rules (PR) to significantly reduce
the number of labels stored for each grid cell. This does not
only reduce the query processing cost but also reduces the
storage and construction cost for our hub labeling approach.
PR1: Pruning using non-taut regions: First, we define
non-taut region (Oh and Leong 2017) of a convex vertex
using the example of vertex E in Figure 3. Two incident ob-
stacle edges of E are DE and QE. Assume we shoot a ray
from D to E that hits an obstacle at X . Similarly, the ray
shot from Q to E hits the boundary of the map at a point Y .
The region of the map that is within the angle ̸ Y EX from
E is called the non-taut region of E (see the gray area). The
taut region of E is the area which is visible from E and is not
the non-taut region (see the green area). Note that E cannot
be an intermediate vertex on any shortest path from a point
p in its non-taut region to any other point p′ (where p′ ̸= E)
because any path from such p to p′ via E will be non-taut.

Based on the idea above, for a cell c, we include a vertex
vj in its visibility list Lc only if c overlaps with its taut re-
gion. In other words, we prune every via label hi:(vj , dij) if
c does not overlap with the taut region of vj . Table 3 shows
the via labels for cs and ct copied from Table 2. Note that
ct does not overlap with the taut regions of both E and C.
Thus, all via labels in H(ct) with E and C as via nodes are
pruned (see the blue struckthrough labels). Similarly, cs does
not overlap with the taut region of A, therefore A:(A, 0) is
removed from H(cs).

To efficiently compute the taut region of a vertex v, we
modify Polyanya (Cui, Harabor, and Grastien 2017) such
that it only generates visible successors and trims each suc-
cessor by removing the part that lies in non-taut angle range.
When Polyanya discovers a successor ab on an edge of
the obstacle or boundary, a triangle △abv is stored. When
Polyanya terminates, the union of all such triangles repre-
sents the taut region of v (see the triangulated green region
in Figure 3). For each cell c, we check whether c overlaps
with the taut region and insert v in Lc only if it does.
PR2: Pruning non-taut labels: Consider a via label
hi:(vj , dij). Let the successor node of vj (i.e., node after vj)
on the shortest path from vj to the hub node hi be denoted as
sij . Consider a point p which is visible from vj . The shortest
path between p and hi cannot pass through vj if the subpath
p → vj → sij is non-taut. Thus, the via label hi:(vj , dij)
can be pruned from the label set of a cell c if p → vj → sij
is non-taut for every p ∈ c.

For example, consider the label A:(D, 4.1) for H(ct) in

s

t

Cs

Ct

2

1.6

Y

XZ

ON

M C

B RS

HI

J A

LK

F

G

D E

P
Q

Figure 3: Illustrating pruning rules

H(cs) Via Labels V Lhi(cs)

A: (A, 0), (F, 2.2), (G, 2)
B: (F, 3.7), (G, 2.8)
F: (F, 0), (G, 1.9)
G: (G, 0)

H(ct) Via Labels V Lhi(ct)

A: (B, 1.6), (C, 6.2), (D, 4.1), (E, 5.1)
B: (B, 0), (C, 4.6), (D, 2.5), (E, 3.5)
C: (C, 0), (D, 2.7), (E, 2.9)
D: (D, 0), (E, 1)
E: (E, 0)

Table 3: Labels pruned by different pruning rules (PR) are
shown in different colors. PR1: blue, PR2: orange, PR3:
red, PR4: purple. The hub nodes with all labels pruned are
struckthrough gray.

Table 3. The successor node on the shortest path from D to
A is B (see Figure 3). Since t → D → B is non-taut, D can-
not be on the shortest path from t to A. We shoot a ray from
the successor node B to D (see the purple ray) and since the
whole cell ct lies above this ray, D cannot be on the short-
est path from any p ∈ ct to A. Thus, the label A:(D, 4.1)
can be safely pruned from H(ct). Similarly, B:(D, 2.5) and
C:(D, 2.7) can be pruned from H(ct) and F :(G, 1.9) can be
pruned from H(cs) (see the orange struckthrough labels).
PR3: Pruning using distance bounds: Let minEdist(c, v)
and maxEdist(c, v) denote the minimum and maximum
Euclidean distance, respectively, from a vertex v to any point
of a cell c, e.g., minEdist(c, v) = minp∈c Edist(p, v).

Lemma 1. Consider a cell c and its two via labels for
the same hub node: hi:(vj , dij) and hi:(vk, dik). If the
whole cell c is visible from vj and maxEdist(c, vj) +
dij ≤ minEdist(c, vk) + dik then vdist(p, vj , hi) ≤
vdist(p, vk, hi) for every p ∈ c.

Proof. Since the whole c is visible from vj , for every p ∈ c,
vdist(p, vj , hi) = Edist(p, vj)+dij ≤ maxEdist(c, vj)+

dij . Since minEdist(c, vk) + dik ≤ vdist(p, vk, hi) and
maxEdist(c, vj) + dij ≤ minEdist(c, vk) + dik, we have
vdist(p, vj , hi) ≤ vdist(p, vk, hi).

Using the above lemma, the label hi:(vk, dik) can
be pruned because this label is not needed to compute
vdistmin(p, hi) for any p ∈ c. Consider cs in Figure 3 and
the labels A:(F, 2.2) and A:(G, 2) of H(cs) in Table 3. Here,
maxEdist(cs, G) + d(G,A) = 1.6 + 2 = 3.6 is smaller
than minEdist(cs, F) + d(F,A) = 2 + 2.2 = 4.2. Thus,
the label A:(F, 2.2) can be pruned from H(cs) (see the red
struckthrough label in Table 3).
PR4: Pruning dead-end labels: We say that an edge uv
between two vertices u and v is a dead-end edge if either u
is in the non-taut region of v or v is in the non-taut region of
u. It is called a dead-end edge because it can only be the first
or the last edge on any shortest path, i.e., this edge cannot be
an intermediate edge for any shortest path. For example, in
Figure 3, B is in the non-taut region of F and the edge FB
is a non-taut edge. Note that FB cannot be an intermediate
edge for any shortest path.

A label hi:(vj , dij) is called a dead-end label if the first
or the last edge on the shortest path between hi and vj is
a dead-end edge. For example, in Table 3, B:(F, 3.7) is a
dead-end label because the only edge FB on the shortest
path is a dead-end edge. Note that this label is not needed
to compute the shortest path between any s and t and thus
can be removed. This holds true even when s and/or t are
on vj or hi (which can be proved using arguments similar
to those presented in (Oh and Leong 2017)). When we con-
struct the hub labels of the visibility graph at Step 2 (see Of-
fline Preprocessing), we maintain the first and last edges on
the shortest paths and remove the labels for which the first
or the last edge is a dead-end edge. In our running example,
the labels E:(C, 2.9), F :(B, 3.7) and G:(A, 2) are removed
from Table 1. Consequently, these labels are not included in
the visibility list of any cell c, i.e., these labels are pruned
for all cells of the grid.
Storing minimum distances to hub nodes: We define a
lower bound on the minimum distance from a cell c to a
hub node hi using the via labels V Lhi

(c) as follows.

mindist(c, hi) = min
hi:(vj ,dij)∈V Lhi

(c)
minEdist(c, vj)+dij

(5)
During preprocessing, for each unique hub node hi ∈

H(c), we also store mindist(c, hi) computed using Eq. (5).
Later, we show how to utilize this during query processing.

Query Processing
The pruning rules presented above significantly reduce the
number of labels stored for each cell (e.g., see Table 3) thus
reduce the query processing cost. Recall that, to compute
vdistmin(p, hi), Algorithm 1 ignores a label hi:(vj , dij) if
vj is not visible from p. As stated earlier in the pruning rule
1 (PR1), vj cannot be on the shortest path if p is in its non-
taut region. Thus, instead of checking whether p is visible
from vj or not, we check whether p is in the taut region of
vj or not. We efficiently check this as follows. During the

#Maps # Queries #Vertices #Convex Vertices
DAO 156 159,464 1727.6 926.5
DA 67 68,150 1182.9 610.8
BG 75 93,160 1294.4 667.7
SC 75 198,224 11487.5 5792.7

Table 4: Total number of maps and queries, and average
number of vertices and convex vertices in each benchmark.

preprocessing, we maintain a triangle list for each convex
vertex vj which represents the taut region of vj (see the tri-
angulated green region in Figure 3). The triangle list is kept
sorted according to the angles. To check whether a point p is
in taut region of vj , a binary search is conducted to find the
triangle △abvj whose angle range overlaps with the angle
of pvj . p is in the taut region if and only if such a triangle
exists and p is found to be inside the triangle. Let T be the
number of triangles in the triangle list. The complexity of
checking whether p is in the taut region or not is O(log T).
Optimisation: The optimisation is based on the lower bound
(see Eq. (5)) we stored during preprocessing.

Lemma 2. ∀p ∈ c, mindist(c, hi) ≤ vdistmin(p, hi).

Proof. For every point p ∈ c, minEdist(c, vj) ≤ d(p, vj)
for any vertex vj . Thus, minEdist(c, vj)+dij ≤ d(p, vj)+
dij which implies mindist(c, hi) ≤ vdistmin(p, hi).

Lemma 3. For a source s ∈ cs and a target t ∈ ct and a
common hub node hi, mindist(cs, hi)+mindist(ct, hi) ≤
vdistmin(s, hi) + vdistmin(t, hi).

In Algorithm 2, we sort the common hub nodes
H(cs) ∩ H(ct) in ascending order of mindist(cs, hi) +
mindist(ct, hi) and iteratively process them in this order (at
line 6). When the algorithm accesses a common hub node hi

for which the currently found shortest distance dist is less
than or equal to mindist(cs, hi)+mindist(ct, hi), the algo-
rithm terminates returning dist as the shortest distance. This
is because d(s, hi, t) for every common hub node hi not yet
processed by the algorithm is guaranteed to be at least equal
to the shortest distance dist found already by the algorithm.
Complexity: Let |S| denote the number of elements in a
set S. Algorithm 1 (computing vdistmin(p, hi)) requires
O(L log T) where L = |V Lhi(c)| is the number of via la-
bels for the hub node hi in the cell c that contains p and
O(log T) is the cost to check whether p is in the taut region
of a vertex vj or not. Here, L is bounded by the number
of convex vertices from which c is visible1. To compute the
shortest distance, Algorithm 2 takes O(|H(cs)|+|H(ct)|) to
find all common hub nodes. For each common hub node hi,
the algorithm computes vdistmin(s, hi) and vdistmin(t, hi)
using Algorithm 1. Therefore, the total cost of the algorithm
is O(|H(cs)|+ |H(ct)|+ |H(cs) ∩H(ct)| × L log T).

1In practice, L is typically a small value especially when grid
cells are small (see Table 7). Also, O(log T) cost is only required
for the labels for which the if condition at line 3 in Algorithm 1 is
true

Map

Build Time (Secs) Memory (MB)
EHL Competitors EHL Competitors

1x 4x 16x 64x EPS-CPD EPS-HL 1x 4x 16x 64x EPS-CPD EPS-HL
Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

DAO 4.41 87.8 0.35 7.1 0.05 0.72 0.02 0.24 0.11 1.86 0.05 0.72 137 2596 27.5 559.3 7.1 145 2.4 37.2 0.21 3.48 0.78 9.36
DA 1.52 7.45 0.13 0.6 0.02 0.08 0.01 0.07 0.02 0.15 0.02 0.21 48.9 203 9.0 41.1 2.2 10.7 0.9 4.0 0.06 0.26 0.04 0.15
BG 6.99 31.8 0.51 2.4 0.06 0.45 0.02 0.20 0.04 0.81 0.03 0.30 197 1144 31.7 242.8 7.7 64.0 2.2 19.6 0.12 1.38 0.07 0.74
SC 128 603 8.47 42 0.85 4.11 0.25 1.18 3.49 51.5 0.71 3.68 2644 13430 523 2749 142 742 41 204 2.30 13.3 9.30 47.4

Table 5: Average cost (build time and memory) per map and maximum cost among all maps for each of the four benchmarks.

0 25 50 75 100

100

101

102

103

104

Av
er

ag
e

Ru
ni

me
 (

s)

Dragon Age Origins (DAO)

Polyanya
EPS-CPD
EPS-HL
EHL(64x)

EHL(16x)
EHL(4x)
EHL(1x)

0 25 50 75 100

100

101

102

103

Dragon Age II (DA)

Polyanya
EPS-CPD
EPS-HL
EHL(64x)

EHL(16x)
EHL(4x)
EHL(1x)

0 25 50 75 100

100

101

102

103

Baldur's Gate II (BG)

Polyanya
EPS-CPD
EPS-HL
EHL(64x)

EHL(16x)
EHL(4x)
EHL(1x)

0 25 50 75 100

100

101

102

103

104

StarCraft (SC)

Polyanya
EPS-CPD
EPS-HL
EHL(64x)

EHL(16x)
EHL(4x)
EHL(1x)

Figure 4: Runtime comparison between EHL and competitors. The x-axis shows the percentile ranks of queries in number of
node expansions needed by A* search to solve them.

Experiments
Similar to the existing studies, we conduct experiments
on the widely used game map benchmarks2, described
in (Sturtevant 2012a), on a total of 373 game maps (see Ta-
ble 4). Each map has an underlying grid and we refer to the
cell of this grid as the base cell. We evaluate the effect of
size of the uniform grid used in our Euclidean Hub Labeling
(EHL) approach by using grids where each cell is N times
bigger than the base cell in each dimension. We vary N from
1 to 64 (e.g., cell sizes vary from 1x to 64x of the base cell
size in each dimension) and employ SHP (Li et al. 2017) as
the underlying hub labeling approach using the implemen-
tation taken from the public repository3. For reproducibility,
implementation of EHL is available online4.

We compare our approach with two state-of-the-art algo-
rithms, EPS-CPD5 (Shen et al. 2022) and Polyanya6 (Cui,
Harabor, and Grastien 2017), using the implementations
provided by the authors. We also compare with EPS-HL
(a variant of EPS-CPD as introduced in the Related Work
section). An advantage of using grid benchmarks is that
it enables a direct comparison with any-angle grid-based
pathfinding algorithms. Note that it was shown in the pre-
vious works (Cui, Harabor, and Grastien 2017; Shen et al.
2020) that Polyanya and EPS-CPD significantly outperform
all existing any-angle grid-based pathfinding algorithms.

2https://github.com/nathansttt/hog2
3http://degroup.cis.umac.mo/sspexp
4https://github.com/goldi1027/EHL
5https://github.com/bshen95/End-Point-Search
6https://bitbucket.org/mlcui1/polyanya

Each individual query is run 5 times and we report the av-
erage query time for each algorithm to return the complete
shortest path. All the algorithms are implemented in C++
and complied with -O3 flag. We run experiments on a 3.2
GHz Intel Core i7 machine with 32 GB of RAM.
Preprocessing Time and Space: Table 5 compares the
preprocessing time and memory of EHL for different grid
sizes with EPS-CPD and EPS-HL (we do not compare with
Polyanya because it is an online algorithm and employs a
navigation mesh requiring insignificant preprocessing time
and storage). All experiments are run on a 12 core machine
and the build time would be better/worse if more/less pro-
cessors are available. Also, the reported cost for EHL is the
total cost including the cost for constructing and storing SHP
hub labels and visible/taut regions for each vertex. The build
time and memory required by EHL are in general larger
than EPS-CPD and EPS-HL especially for smaller grid cells.
However, these are practical even when the cell size is 1x es-
pecially considering the main memory available in modern
computers. Also, the build time and memory of EHL reduce
significantly as the cell sizes increase, e.g., as the cell size
increases from 1x to 64x, build time and memory require-
ments decrease by over 100 times and over 50 times, respec-
tively. This is because EHL requires processing fewer cells
when cells are larger. However, this comes at the expense of
querying cost as shown next.
Query Performance: Similar to previous works (Cui,
Harabor, and Grastien 2017; Shen et al. 2022), in Figure 4,
we sort the queries by the number of nodes expansions re-
quired by the standard A* search to solve them (which is a
proxy for how challenging a query is) and the x-axis corre-

Map C Build Time (Secs) Memory (MB)
-PR1 -PR2 -PR3 -PR4 -OP -All Final -PR1 -PR2 -PR3 -PR4 -OP -All Final

DAO

1x 13.282 4.476 4.440 5.391 4.430 - 4.418 182.049 203.399 247.715 206.159 113.766 - 136.139
4x 0.968 0.355 0.351 0.434 0.349 0.999 0.352 36.318 30.289 38.980 47.864 24.470 176.850 26.584
16x 0.143 0.055 0.050 0.060 0.049 0.104 0.051 8.176 6.222 6.547 12.140 5.930 19.934 6.162
64x 0.075 0.025 0.022 0.021 0.021 0.029 0.022 1.715 1.444 1.444 2.928 1.406 3.683 1.444

DA

1x 4.552 1.442 1.442 1.651 1.398 4.879 1.873 64.846 69.267 69.509 70.219 39.684 493.856 48.521
4x 0.389 0.132 0.127 0.146 0.123 0.337 0.196 11.410 9.636 10.726 14.786 7.779 40.601 8.608
16x 0.089 0.030 0.024 0.025 0.021 0.051 0.024 2.381 1.862 1.884 3.456 1.757 4.928 1.854
64x 0.062 0.017 0.010 0.009 0.009 0.020 0.012 0.550 0.478 0.478 0.913 0.459 1.090 0.474

BG

1x 21.851 6.490 6.689 7.731 6.666 - 6.988 269.217 332.058 298.593 266.981 157.088 - 196.831
4x 1.421 0.498 0.496 0.578 0.485 1.676 0.597 40.575 39.932 44.113 50.017 27.633 240.559 31.065
16x 0.126 0.059 0.055 0.064 0.054 0.167 0.059 8.894 7.325 7.874 12.584 6.682 23.812 7.045
64x 0.028 0.020 0.018 0.017 0.017 0.055 0.018 1.887 1.595 1.599 2.948 1.542 3.778 1.592

SC

1x - - - - 123.108 - 128.353 - - - - 2190.222 - 2633.301
4x 27.278 8.348 8.517 10.580 8.230 - 8.471 717.278 703.762 874.349 927.945 469.553 - 512.359
16x 2.047 0.841 0.853 0.985 0.833 2.873 0.851 178.001 138.485 162.484 258.009 126.257 601.141 130.858
64x 0.395 0.253 0.257 0.199 0.252 0.480 0.251 38.463 30.419 30.551 62.555 29.820 86.746 30.394

Table 6: Effect of pruning rules (PR) and the optimisation (OP) on build time and memory of EHL. Final is our final algorithm.
-PRx refers to the version where only the pruning rule x is removed from Final, -OP is when only the optimisation is removed
and -All is when all pruning rules and the optimisation are removed. We exclude the cost for constructing/storing SHP hub
labels and visible regions as these are common to all versions. We show “-” for the cases when we ran out of memory.

sponds to the percentile ranks of queries in this order. Note
that the y-axis is in log-scale. EHL(1x) and EHL(4x) signif-
icantly outperform Polyanya, EPS-CPD and EPS-HL for al-
most all cases. Specifically, EHL(1x) typically outperforms
Polyanya and EPS-HL by around two orders of magnitude
and EPS-CPD by more than an order of magnitude. Al-
though EHL with larger cell sizes (i.e., 64x and 16x) outper-
forms Polyanya, EPS-CPD and EPS-HL for the challenging
queries, for the less challenging queries (when s and t are
close but not co-visible), EHL runs slower because it needs
to access a large number of hub nodes and labels in order
to solve these queries. Querying time for EHL stabilises (or
decreases) as the queries become more challenging (in terms
of A* node expansions) because the cost of EHL mainly de-
pends on the number of labels stored in cs and ct (and not
much on d(s, t)), and the most challenging queries (in terms
of A* node expansions) belong to the large maps without
much open space which results in fewer vertices visible from
cs and ct resulting in smaller number of labels in general.

Ablation Study : In Table 6 and Table 7, we show the effec-
tiveness of the four pruning rules and the optimisation (e.g.,
by removing these one at a time) on build time, memory and
query performance.

Preprocessing Time and Space: Table 6 shows that remov-
ing PR1 significantly increases the build time, because with-
out removing the non-taut regions, EHL needs more time to
compute the full visible area for each convex vertex which
also results in a larger visible list to be processed in pre-
processing. In addition, all pruning rules show positive ef-
fects on memory (and in some cases on build time). How-
ever, including the optimisation (OP) has a negative effect
on build time and memory because computing and storing

lower-bounds incur additional cost.
Query Performance: Table 7 shows that OP is the most im-
portant enhancement for query performance as it stores
lower-bounds which helps EHL skip some common hub
nodes during the query time. Next in line for effectiveness,
especially for bigger grid cells, are PR1 and PR4 which
show remarkable improvement in query performance by re-
moving a notable amount of labels that are inside the non-
taut region or are dead-end. Though not as significant, PR2
and PR3 also play an important role in terms of improving
performance, and together with the other pruning rules and
the optimisation, we achieve speed up against the baseline
version of EHL (where all PRs and OP are removed) by up
to an order of magnitude.

Table 7 also gives insights into why EHL significantly
outperforms EPS-CPD especially for smaller grid cells by
showing some important statistics from their respective
complexity analysis. Although there are many hub nodes in
cs and ct (i.e., |H(cs)| and |H(ct)|), the number of com-
mon hub nodes #CN = |H(cs) ∩ H(ct)| and the average
number of via labels per hub node L are quite small for
smaller grid cells. Consequently, EHL is very efficient es-
pecially for smaller grid cells as it needs to access a small
number of via labels to solve a query. On the other hand,
although EPS-CPD has a smaller number of vertices visi-
ble from s and t (i.e., |Vs| and |Vt|), it has to extract many
first moves (#FM) from the CPD each requiring a binary
search on a compressed row of the CPD. Furthermore, EPS-
CPD requires finding the vertices visible from s and t using
Polyanya which incurs additional cost.
Remarks on EPS-CPD and EPS-HL: EPS-HL is outper-
formed by EPS-CPD mainly because, unlike EPS-CPD,

Map C Query Performance (µs) EHL (Final) EPS-CPD EPS-HL
-PR1 -PR2 -PR3 -PR4 -OP -All Final |H(cs)| |H(ct)| #CN L |Vs| |Vt| #FM Time |Vs| |Vt| #AL Time

DAO

1x 2.18 2.17 2.22 2.05 2.38 - 1.97 80 79 10 1.80

17 16 416 27.40 17 16 27023 82.624x 3.83 3.49 3.74 4.00 5.38 17.86 3.49 113 112 17 5.23
16x 11.07 8.58 8.80 11.76 13.30 31.30 8.91 160 162 30 13.21
64x 37.26 29.36 29.48 45.41 35.06 75.72 30.95 285 288 78 23.01

DA

1x 1.85 1.72 1.85 1.63 1.75 6.40 1.55 44 42 5 1.72

11 11 161 12.62 11 11 5615 22.654x 3.30 2.61 2.91 2.92 3.36 8.53 2.70 60 58 8 4.76
16x 7.78 5.42 5.60 7.09 7.24 13.98 5.69 86 83 14 10.61
64x 20.49 14.73 15.06 20.90 16.76 30.56 15.55 157 155 40 15.97

BG

1x 1.78 1.82 1.83 1.67 1.93 - 1.66 59 56 12 1.51

11 11 132 11.53 11 11 5795 21.924x 2.88 2.68 2.84 2.72 4.03 19.06 2.59 77 73 18 3.99
16x 7.39 5.96 6.27 7.41 10.80 30.41 6.46 107 103 30 10.78
64x 25.73 19.25 19.40 27.84 27.19 61.96 21.01 176 170 65 20.61

SC

1x - - - - 4.61 - 3.45 167 163 22 1.34

32 32 1108 70.99 32 32 132645 359.484x 6.52 6.10 6.67 6.62 10.03 - 5.46 236 232 34 3.17
16x 20.02 14.86 16.43 20.61 32.23 132.24 15.05 364 360 62 8.80
64x 97.49 64.45 65.09 111.15 105.20 257.94 67.19 638 633 139 18.16

Table 7: Effect of the pruning rules (PR) and the optimisation (OP) on query performance (see Table 6 for naming of different
versions). We only consider the queries for which s and t are not co-visible because PRs and OP are applicable only for such
queries (144,011 for DAO, 62,861 for DA, 69,104 for BG, and 179,036 for SC). For EHL, we also report the average # of hub
nodes |H(cs)| (resp. |H(ct)|) in cs (resp. ct), the average # of common hub nodes #CN=|H(cs)| ∩H(ct)| and the average # of
via labels per hub node (L) in cs and ct. For EPS-CPD and EPS-HL, we report average runtime (in µs) as well as average |Vs|
(resp. |Vt|) denoting the average # of vertices visible from s (resp. t). For EPS-CPD, we also show the average # of total first
move (#FM) extractions and, for EPS-HL, we report the average # of total accessed labels (#AL) required to answer the query.

EPS-HL is unable to exploit caching and cannot effectively
use partial paths for pruning. Although HL can typically
compute the shortest distance between a given pair of ver-
tices faster than a CPD, our experimental results (e.g., see
Table 7) show that EPS-HL runs significantly slower than
EPS-CPD. This is due to the two major reasons:

1. EPS-CPD and EPS-HL both require computing dis-
tances between many pairs of vertices in Vs × Vt and CPD
can significantly benefit from caching. Specifically, to com-
pute the distance, CPD iteratively retrieves first moves until
the target vertex is reached. EPS-CPD caches the distances
on the intermediate nodes (Shen et al. 2022) and, in future
iterations, uses these cached values to quickly obtain the dis-
tances. On the other hand, EPS-HL is unable to benefit from
caching (at least trivially).

2. When a first move is extracted by CPD from a vertex in
Vs towards a vertex in Vt (or vice versa), non-taut paths can
be pruned if the first move is a non-taut move (see (Shen
et al. 2022) for details). Thus, for many pairs, EPS-CPD
does not need to recover the whole path if the first move is
non-taut. In contrast, EPS-HL requires computing the short-
est distance before it can prune the path, and computing the
shortest distance between two vertices requires accessing all
hub labels stored in the two vertices.

Table 7 shows the average total number of first move ex-
tractions (#FM) by EPS-CPD and the average total num-
ber of accessed labels (#AL) by EPS-HL to answer a query.
Since EPS-CPD employs caching and can prune a non-taut
path after only one first move extraction from each end, it

requires a much smaller number of first move extractions.
On the other hand, EPS-HL needs to access a large number
of labels resulting in a significantly higher query cost.

The above explains that the performance improvement of
our algorithm, EHL, does not come from simply using HL
instead of CPD but because EHL is inherently different and
addresses two major limitations of the EPS framework: i)
EHL avoids the |Vs| × |Vt| pairwise complexity of the EPS-
CPD and EPS-HL by creating “via labels” for grid cells ob-
tained by projecting the hub labels from the vertices of the
graph to the cells visible from them; and ii) during query
processing, both EPS-CPD and EPS-HL require finding the
vertices visible from s or t by employing Polyanya which
incurs additional cost. On the other hand, EHL avoids such
computation because the pre-computed hub labels of cs and
ct contain the vertices visible from these cells.

Conclusions and Future Work
We present a new Euclidean pathfinding approach based
on hub labeling, called Euclidean Hub Labeling (EHL),
which significantly outperforms the state-of-the-art algo-
rithms in terms of query time. To compute hub labels, we
used SHP (Li et al. 2017) which is one of the most efficient
distance computation techniques for road networks. It needs
to be investigated whether other techniques specifically de-
signed to compute labels for the Euclidean plane can provide
further performance improvement. Also, in future, we plan
to focus on improving the pre-processing cost of EHL.

Acknowledgements
Muhammad Aamir Cheema is supported by Australian Re-
search Council FT180100140 and DP230100081.

References
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck,
R. F. 2011. A hub-based labeling algorithm for shortest
paths in road networks. In International Symposium on Ex-
perimental Algorithms, 230–241. Springer.
Botea, A. 2011. Ultra-Fast Optimal Pathfinding without
Runtime Search. In Proceedings of the Seventh AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, AIIDE 2011, October 10-14, 2011, Stanford,
California, USA. The AAAI Press.
Cheema, M. A. 2018. Indoor location-based services: chal-
lenges and opportunities. SIGSPATIAL Special, 10(2): 10–
17.
Cohen, E.; Halperin, E.; Kaplan, H.; and Zwick, U. 2003.
Reachability and Distance Queries via 2-Hop Labels. SIAM
J. Comput., 32(5): 1338–1355.
Cui, M.; Harabor, D. D.; and Grastien, A. 2017.
Compromise-free Pathfinding on a Navigation Mesh. In
Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, 496–502. ijcai.org.
Harabor, D. D.; Grastien, A.; Öz, D.; and Aksakalli, V. 2016.
Optimal Any-Angle Pathfinding In Practice. Journal of Ar-
tificial Intelligence Research, 56: 89–118.
Kallmann, M.; and Kapadia, M. 2014. Navigation Meshes
and Realtime Dynamic Planning for Virtual Worlds. In ACM
SIGGRAPH 2014 Courses, 3. ACM Press.
Li, Y.; U, L. H.; Yiu, M. L.; and Kou, N. M. 2017. An
Experimental Study on Hub Labeling based Shortest Path
Algorithms. Proceedings of the VLDB Endowment, 11(4):
445–457.
Mac, T. T.; Copot, C.; Tran, D. T.; and De Keyser, R.
2016. Heuristic approaches in robot path planning: A sur-
vey. Robotics and Autonomous Systems, 86: 13–28.
Oh, S.; and Leong, H. W. 2017. Edge N-Level Sparse Vis-
ibility Graphs: Fast Optimal Any-Angle Pathfinding Using
Hierarchical Taut Paths. In Proceedings of the Tenth Inter-
national Symposium on Combinatorial Search, SOCS 2017,
16-17 June 2017, Pittsburgh, Pennsylvania, USA, 64–72.
AAAI Press.
Shen, B.; Cheema, M. A.; Harabor, D.; and Stuckey,
P. J. 2020. Euclidean Pathfinding with Compressed Path
Databases. In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2020, 4229–4235. ijcai.org.
Shen, B.; Cheema, M. A.; Harabor, D. D.; and Stuckey,
P. J. 2022. Fast optimal and bounded suboptimal Euclidean
pathfinding. Artificial Intelligence, 302: 103624.
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast First-
Move Queries through Run-Length Encoding. In Proceed-
ings of the Seventh Annual Symposium on Combinatorial

Search, SOCS 2014, Prague, Czech Republic, 15-17 August
2014. AAAI Press.
Sturtevant, N. R. 2012a. Benchmarks for Grid-Based
Pathfinding. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(2): 144–148.
Sturtevant, N. R. 2012b. Moving path planning forward.
In International Conference on Motion in Games, 1–6.
Springer.

