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Abstract Given a set of criteria, an object o domi-

nates another object o′ if o is more preferable than o′

according to every criterion. A skyline query returns

every object that is not dominated by any other ob-

ject. A top-k query returns k most preferred objects

according to a given scoring function. In this paper, we

study the problem of continuously monitoring moving

skyline queries and moving top-k queries where one of

the criteria is the distance between the objects and the

moving query. We propose safe zone based techniques

to address the challenge of efficiently updating the re-

sults as the query moves. A safe zone is the area such

that the results of a query remain unchanged as long as

the query lies inside this area. Hence, the results are re-

quired to be updated only when the query leaves its safe

zone. We present several non-trivial optimizations and
propose an efficient algorithm for safe zone construc-

tion for both the skyline queries and top-k queries. Our

techniques for the moving top-k queries are generic in

the sense that these are immediately applicable to any

top-k query as long as its scoring function is mono-

tonic. Furthermore, we show that the proposed tech-

niques can also be extended to monitor various other
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queries for different distance metrics. Our experiments

demonstrate that the cost of our techniques is reason-

ably close to a lower bound cost and is several orders

of magnitude lower than the cost of a näıve algorithm.

1 Introduction

Due to the exponential increase in the usage of smart

phones, availability of inexpensive position locators and

cheap network bandwidth, location-based services are

becoming increasingly popular. Skyhook reported that

the number of location-based applications being de-

veloped each month is increasing exponentially. Con-

sequently, spatial queries have received huge research

attention in the past couple of decades. Our focus in
this paper is on continuously monitoring moving queries

that require continuously updating the query results as

the query moves in a two dimensional space. Similar

to almost all existing techniques [48,31,11,21,45,10],

we use a timestamp-based model where the results are

to be updated at each timestamp. The length of the

timestamp can be appropriately set depending on the

application. For example, a taxi driver may want to get

the updated results every minute (in which case the

timestamp length may be set to one minute). On the

other hand, an intelligent virtual assistant may want to

retrieve the result updates every second, e.g., to com-

pute the results of other queries such as loyalty-based

queries [36] or to alert the user for only the important

updates. Critical applications may want to monitor the

results at a much higher frequency (e.g., every millisec-

ond). For example, the alert system in a fighter jet may

require continuously monitoring other nearby objects at

a very high frequency to detect potentially dangerous

situations and raise alarm.
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Significant research attention has been given to con-

tinuously monitor spatial queries such as k nearest neigh-

bors (kNN) queries [48,31], range queries [48,11] and re-

verse k nearest neighbors queries [21,45]. Each of these

queries retrieves the objects based on their distances

from the query location. However, in many real world

applications, distance is not usually the only criterion

desired by the users. In this paper, we focus on con-

tinuously monitoring the spatial queries that involve

multiple criteria (distance being one of the criteria).

We study the problem of continuously monitoring sky-

line query and top-k query where distance between the

objects and the moving query is one of the criteria.

Consider the example of a car driver who is looking

for restaurants. He may be interested in the restaurants

that are close to his location, have good reputations and

are cheap, i.e., distance, rank and price are the three

criteria. A traditional continuous kNN query monitors

the k closest restaurants regardless of their reputations

and food prices. In contrast, skyline and top-k queries

consider the restaurants’ reputations and their prices as

well as their distance to the query point. Specifically, a

skyline query returns every restaurant that is not dom-

inated by any other restaurant (i.e., for every returned

restaurant o, there does not exist any other restaurant

that is closer to the query, has a better reputation and

is cheaper). Moreover, a top-k query returns k restau-

rants that have best scores defined according to a user

defined monotonic scoring function that involves those

three criteria (distance, reputation and price). Since the

distances between the car and the restaurants change

as the car moves, the skyline and the top-k objects are

needed to be updated continuously. In this paper, we

present efficient techniques to continuously monitor the

moving skyline and the moving top-k queries.

In the past few years, several safe zone based ap-

proaches have been proposed to monitor various con-

tinuous spatial queries (see [35] for a nice survey). Such

algorithms do not only return the current results but

also a safe zone which is an area such that the results

remain unchanged as long as the query remains inside

the safe zone. Hence, the results of the query are not

required to be updated unless the query leaves its safe

zone. The safe zone provides a guarantee to the human

users that the results are stable as long as they are

in the safe zone (thus providing the safe zone ensures

them that they are not missing out on any interest-

ing results as long as they are inside it regardless of

the update rate they choose). Due to the effectiveness

and popularity of the safe zone based approaches, we

also propose efficient safe zone based solutions. Next,

we present our contributions for both moving skyline

and moving top-k queries.

1.1 Moving Skyline Queries

For the moving skyline queries, we make the following

contributions in this paper.

– We design a novel safe zone based algorithm to con-

tinuously monitor moving skyline queries. The al-

gorithm returns the current results of a query as

well as a safe zone and guarantees that the results

remain valid unless the query leaves the safe zone.

Note that the lower bound cost of any algorithm to

compute the safe zone is the cost of computing the

skyline objects. IO and CPU cost of our safe zone

construction algorithm is close to the IO and CPU

cost of BBS [33] which is an IO optimal skyline al-

gorithm, i.e., IO cost of our safe zone construction

algorithm is close to the lower bound IO cost. This

also implies that while the overhead of computing

the safe zone is small as compared to the cost of

computing the skyline objects, the benefit is large

because the results are not required to be updated

as long as the query remains inside the safe zone.

This enables our algorithm to monitor the skyline

quite efficiently.

– Although the focus of this paper is to present the

techniques for the case where the distances between

objects and query are computed using Euclidean

distance metric in 2d space, the core ideas (Sec-

tion 3.2 to 3.4) can be used to efficiently construct

the safe zone for arbitrary distance metric (e.g.,

Manhattan distance in 3d space, network distance

in road networks).

– For a strict evaluation, we compare our algorithm

with a specially designed imaginary algorithm called
supreme algorithm. The supreme algorithm assumes

the existence of an oracle and meets the lower bound

IO cost for safe zone construction. More specifically,

the supreme algorithm computes the skyline objects

using BBS [33] which is an IO optimal skyline al-

gorithm. We assume that the oracle computes the

safe zone without incurring any IO or CPU cost

and returns it to the supreme algorithm. Our ex-

tensive experimental study demonstrates that the

cost of our algorithm is reasonably close to the cost

of the supreme algorithm. Moreover, our algorithm

performs three orders of magnitude better than a

näıve algorithm.

1.2 Moving Top-k Queries

We make the following contributions for the moving

top-k queries.
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– Multicriteria decision making problems are widely

studied and, depending on the application needs,

different monotonic scoring functions are used such

as weighted sum [18,15], weighted product [4,29],

weighted distance [43,5], and weighted aggregate

sum product assessment (WASPAS) [47] etc. There

is no single scoring function that is superior to all

other types of scoring functions for all kinds of prob-

lems [3]. Since different scoring functions have differ-

ent characteristics and properties, a decision maker

may prefer one scoring function over the other de-

pending on the applications. Thus, there is a need to

design techniques that are applicable to a wide va-

riety of scoring functions. To the best of our knowl-

edge, we are the first to present techniques for con-

tinuously monitoring top-k queries for arbitrary mono-

tonic scoring functions. We develop generic non-

trivial pruning techniques and novel construction

algorithm to efficiently compute the safe zone for

moving top-k queries.

– We show that our proposed techniques can be gen-

eralized to continuously monitor a variety of other

queries for multidimensional space and for other dis-

tance metrics such as Manhattan distance or net-

work distance in road networks.

– We conduct an extensive experimental study on real

data sets for weighted sum, weighted product and

weighted distance scoring functions comparing our

algorithm against a näıve approach as well as a spe-

cially designed imaginary algorithm called supreme.

The supreme algorithm assumes the existence of an

oracle to compute the safe zone without incurring

any IO or CPU cost. The results demonstrated that

our algorithm is several orders of magnitude faster

than the näıve algorithm and its cost is reasonably

close to that of the supreme algorithm.

The rest of the paper is organized as follows. We

discuss the related work in section 2. In Section 3, we

present our algorithm to continuously monitor skyline

queries. Section 4 presents our generic algorithm for

continuous top-k queries. An extensive experimental

study is presented in Section 5. Section 6 concludes the

paper.

2 Related Work

2.1 Skyline Queries

A snapshot skyline query retrieves the set of skyline ob-

jects only once and the results are not required to be up-

dated. Some of the notable snapshot skyline algorithms

include block-nested loop (BNL) [8], divide and conquer

(D&C) [8], bitmap [40], index [40], nearest neighbor

(NN) [22] and branch and bound search (BBS) [33]. BBS

is superior to the other algorithms and is IO optimal,

i.e., it does not access any node of R-tree that cannot

contain a skyline object. Liue et. al [27] propose Sky-

line diagram which is inspired by Voronoi diagram and

helps computing different variants of skyline queries.

Continuous skyline queries have been studied under

various settings, e.g., updating skyline in data streams [26,

28], skyline maintenance due to deletions [44] and sky-

line monitoring for dynamically changing points [19,24,

17]. Below, we discuss the most relevant existing studies

on continuous skyline queries.

Shi et. al [39] study skyline queries for the case

where the objects are continuously moving in the road

network and the query is static. Tang et. al [41] also

study skyline queries over moving objects on dynamic

road networks where the edge weights may also change.

Chen et. al [14] study continuous skyline queries where

the dominance is defined using distance and the tex-

tual similarity. Papapetrou et. al [34] study continuous

skyline queries on data streams in a distributed envi-

ronment. Zheng et. al [49] study continuous range sky-

line queries that aim to continuously find the objects

that are not dominated by any other object and are

within a given distance from the moving query’s loca-

tion. Note that the results of range skyline query may

be empty when all objects within the given range are

dominated by some other object. Fu et. al [16] study

range-based skyline queries in road networks that, given

a query range, return skyline points for each query lo-

cation within the range.

Several existing studies [17,23,25] focus on continu-

ous skyline queries where the data objects change their

attribute values. These techniques are designed to up-

date the skyline assuming that the number of objects

that change their attributes is small and are not suit-

able when a large number of objects continuously issue

updates. Note that in our problem setting, due to the

change in query location, the distance attributes of all

the objects change. This is equivalent to the scenario

where all of the objects issue updates and this makes

these techniques unattractive for the problem studied

in this paper.

The work that is most closely related to our work is

done by Huang et. al [19] who propose a kinetic-based

data structure to update the skyline results. Lee et.

al [24] also study a similar problem. However, both of

these works rely on the assumption that the velocities

of the moving points are known. Unfortunately, this as-

sumption does not hold in many real world applications

where the points (e.g., cars) frequently change their mo-

tion pattern (e.g., speed and direction). Furthermore,
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the extension of their techniques is non-trivial for the

scenarios where velocities are unknown.

2.2 Top-k queries

Ihab et. al [20] provide an extensive survey on snap-

shot top-k queries. Below, we briefly discuss some of

the most related work on continuous top-k queries.

Continuous top-k queries [30,7,38,37] on data streams

has received significant attention. These techniques fo-

cus on continuously updating the top-k objects in data

streams using a sliding window model. However, the

continuous monitoring of queries on data streams is an

inherently different problem to that of monitoring mov-

ing queries. To the best of our knowledge, the first work

on moving top-k query was presented in [43]. However,

they study top-k spatial keyword queries. The authors

use weighted distance as the scoring function and uti-

lize weighted Voronoi cells to construct the safe zone

for each query. They proposed Incremental Border Dis-

tance algorithm that prunes objects which cannot con-

tribute to the safe zone.

Huang et. al [18] also proposed a safe zone based

approach to monitor the result of moving top-k spatial

keyword queries focusing on the weighted sum scoring

function. One major difference between the above men-

tioned existing studies and our work is that the exist-

ing studies focus on spatial keyword queries where both

the distance and the keyword similarity are query de-

pendent. In contrast, in our problem settings, only the

distance is query dependent and other attributes (e.g.,

price, ranking) do not depend on the query. Further-

more, our approach is more generic in that it works

on any number of criteria in contrast to the existing

studies that are designed for only spatial and keyword

similarities. Lastly and most importantly, our proposed

techniques are generic and can be immediately applied

to all monotonic scoring functions in contrast to the

above mentioned studies that focus only on a given type

of scoring function.

3 Continuous monitoring of skyline queries

3.1 Problem Definition

Let O be a set of objects. In addition to location coor-

dinates, each object has d attributes (dimensions). The

i-th attribute value of an object o is denoted as o[i]. The

distance between a query q and an object o is denoted as

dist(q, o) and is considered the (d+1)-th dimension of

the object, i.e., o[d+ 1] = dist(q, o). Hence, each object

is considered to have (d+1) dimensions. Since dist(q, o)

changes with the change in query location, the distance

is called the dynamic dimension of o. Other attributes

of the objects are not affected by the query movement

and are called static dimensions of the objects.

Complete Dominance. An object o is completely

dominated by another object o′ if for every dimension

1 ≤ i ≤ (d + 1), o′[i] ≤ o[i] and for at least one di-

mension 1 ≤ j ≤ (d + 1), o′[j] < o[j]. This dominance

relationship is called complete dominance because it in-

volves all dimensions (static and dynamic) in contrast

to the static dominance relationship (defined in Sec-

tion 3.2) that considers only the static dimensions of

the objects.

Skyline Query. A skyline query returns every object o

that is not completely dominated by any other object.

Since the value of (d+1)-th dimension (i.e., dist(q, o)) of

every object o changes as the query changes its location,

the skyline is needed to be continuously updated. In this

paper, we study the problem of continuously monitoring

the skyline of a moving query.

3.2 Formalizing Safe Zone

Throughout this section, we use Figure 1 to explain

the concepts. Figure 1(a) shows 5 objects according to

their static dimensions (price and rank) and Figure 1(b)

shows the same objects according to their location co-

ordinates. We remark that although Figure 1(b) shows

the objects in two dimensional Euclidean space, the

proposed ideas are immediately applicable to general

metric spaces (e.g., road network distance, Manhattan

distance in 3d space). For the ease of presentation, we

first introduce some terms and notations.

Static equality. An object o is statically equal to o′ if,

for every static dimension i (i.e., 1 ≤ i ≤ d), o[i] = o′[i].

We denote the static equality as o =s o
′.

Static dominance. An object o is statically domi-

nated by another object o′ if o is not statically equal

to o′ and for every static dimension i, o′[i] ≤ o[i]. We

use o′≺so to denote that o′ statically dominates o. We

use o′�so to denote that o′ either statically dominates

o or is statically equal to o. In Figure 1(a), o2�so4 and

o1�so4.

For the ease of presentation, we assume that for any

two objects o and o′, dist(q, o) 6= dist(q, o′). We remark

that this assumption is made only for the ease of presen-

tation (by avoiding the boundary conditions) and our

techniques can be applied even when this assumption

does not hold.

Complete dominance revisited. To assist us in ex-

plaining our techniques, we define complete dominance

using the notations defined above. Specifically, an ob-

ject o is completely dominated by another object o′ if
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Table 1 Notations

Notation Definition

o =s o′ o statically equals o′ (Section 3.2)
o≺so′ o statically dominates o′ (Section 3.2)
o�so′ o≺so′ or o =s o′

A(o) Affecting set of o (Definition 1)
IR(o) Impact region of o (Definition 2)
PA(o) Pseudo-affecting set of o (Definition 4)
PIR(o) Pseudo-impact region of o (Definition 5)
Z Safe zone
NN(x, S) Nearest neighbor of x among a set of objects

S

o′�so and dist(q, o′) < dist(q, o). In other words, o′

completely dominates o if o′ is at least as good as o

on static dimensions and is closer to the query than

o. In Figure 1, o2 completely dominates o4 because

o2�so4 (see Figure 1(a)) and dist(q, o2) < dist(q, o4)

(see Figure 1(b)). On the other hand, o2 does not com-

pletely dominate o1. This is because, although o2�so1,

dist(q, o2) ≮ dist(q, o1).

Condition for skyline membership. Note that an

object o′ cannot completely dominate o if o′�so no mat-

ter whether dist(q, o′) < dist(q, o) or not. This implies

that only the objects that statically dominate or equal

o can completely dominate o. Based on this, Lemma 1

defines the condition that an object o must satisfy in

order to be a skyline object.

Lemma 1 An object o is a skyline object if and only if

for every other object o′ for which o′�so, dist(q, o′) >

dist(q, o).

Proof is straightforward and is omitted. Intuitively,

Lemma 1 states that o is a skyline object if o is closer
to q than every object o′ that is at least as good as o on

static dimensions (i.e., o′�so). Otherwise, o′ completely

dominates o and o is not a skyline object.

In Figure 1, o4 is not a skyline object because there

exists an object o2 such that o2�so4 and dist(q, o2) <

dist(q, o4). On the other hand, o1 is a skyline object

because o1 is closer to q than the three objects that

statically dominate it (i.e., o2, o3 and o5).

According to the condition specified by Lemma 1,

the locations of only the objects that statically domi-

nate or are equal to o are important in deciding whether

o is a skyline object or not. The set consisting of such

objects is called affecting set of o. Below, we give a for-

mal definition.

Definition 1 Affecting set. Affecting set A(o) of an

object o consists of every object o′ ∈ O for which o′�so.

By definition, the affecting set A(o) of o always in-

cludes o. In the example of Figure 1(a), the affecting set

of o1 is A(o1) = {o1, o2, o3, o5}. Similarly, A(o2) = {o2},
A(o3) = {o3}, A(o4) = {o2, o3, o4} and A(o5) = {o5}.

Let x be a point and S be a set of objects. NN(x, S)

denotes the nearest neighbor (closest object) of x among

the objects in S.

Lemma 2 An object o is a skyline object if and only if

NN(q, A(o)) = o.

The proof is straightforward because, according to

Lemma 1, an object o is a skyline object if and only if

o is closer to q than every object o′ for which o′�so. In

Figure 1, NN(q, A(o1)) = o1 and NN(q, A(o4)) = o2.

Hence, o1 is a skyline object whereas o4 is not.

Now, we introduce the concept of impact region. Im-

pact region IR(o) of an object o is the area such that o

is a skyline object of q if and only if q lies inside IR(o).

Below, we give a formal definition.

Definition 2 Impact region. The impact region IR(o)

of an object o consists of every point x in the space for

which NN(x,A(o)) = o, i.e., every point x for which o

is the closest object in A(o).

(a) Static dimensions (b) Location coordinates

Fig. 1 Illustration of safe zone

Assume that we draw a Voronoi diagram [32] on the

locations of objects in A(o). Let V or(o,A(o)) be the

Voronoi cell in this Voronoi diagram related to the ob-

ject o. A Voronoi cell V or(o,A(o)) has the property that

o is the nearest object (among the objects in A(o)) of a

point x if and only if x lies inside V or(o,A(o)). This im-

plies that the impact region of an object o is its Voronoi

cell constructed using the set of objects A(o). We re-

mark that the concept of Voronoi diagram and Voronoi

cell is applicable to arbitrary metric spaces (e.g., net-

work Voronoi diagram and weighted distance Voronoi

diagram [32]).

Example 1 Recall that Figure 1(a) shows that A(o1) =

{o1, o2, o3, o5}. Voronoi cell of o1 constructed using these

objects is the triangle 4ABC (see Figure 1(b)). Note

that o1 remains the closest object of q among the ob-

jects inA(o1) as long as q remains in4ABC. Hence, the
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impact region of o1 is V or(o1, A(o1)) = 4ABC. The

impact region of o4 is the Voronoi cell V or(o4, A(o4))

(the polygon DEFG in Figure 1(b)) where A(o4) =

{o2, o3, o4}. Note that o4 becomes the skyline object

only when q enters in DEFG.

Note that any object o for which A(o) = o (i.e., no

other object o′ exists s.t. o′�s o) is always a skyline

object regardless of the location of the query or other

objects. In other words, the impact region of such an

object is the whole data space. For instance, in Figure 1,

o2, o3 and o5 are always the skyline objects and their

impact regions correspond to the whole data space.

Safe Zone. Now, we formalize the safe zone. By the

definition of impact region, an object o remains a sky-

line object as long as q remains inside its impact region.

Similarly, an object o′ remains a non-skyline object as

long as q remains outside its impact region. For exam-

ple, in Figure 1(b), o1 remains a skyline object as long

as q remains inside the triangle ABC and o4 remains

a non-skyline object as long as q remains outside the

polygon DEFG. This implies that the results of the

query q remain unchanged as long as q remains inside

the impact region of every skyline object and remains

outside the impact region of every non-skyline object.

Hence, the safe zone can be defined using the impact

regions of the objects.

Definition 3 Safe Zone. Let IRc(o) denote the com-

plement of the impact region of an object o, i.e., the

area outside the impact region of o. Let S denote the

set of skyline objects of q. The safe zone of the query q

is Z = ∩oi∈SIR(oi)
⋂
∩oj∈O−SIRc(oj).

In plain words, the safe zone consists of every point

that lies inside the impact region of every skyline object

and lies outside the impact region of every non-skyline

object.

Example 2 Consider the example of Figure 1. Note that

o1, o2, o3 and o5 are the skyline objects because their

impact regions contain q. The object o4 is a non-skyline

object because its impact region does not contain q. The

safe zone is the area shown shaded in Figure 1(b) and is

defined by IR(o1)∩IR(o2)∩IR(o3)∩IR(o5)∩IRc(o4).

As mentioned earlier, the impact regions IR(o2), IR(o3)

and IR(o5) correspond to the whole data space. Hence,

the safe zone can also be obtained by Z = IR(o1) ∩
IRc(o4) = IR(o1)− IR(o4).

3.3 A Basic Algorithm

A straightforward approach to compute the safe zone

is shown in Algorithm 1. The safe zone is initialized

as the whole data universe, e.g., in Euclidean space,

we initialize the safe zone as a rectangle that covers

the whole data space. Since the safe zone is being con-

structed and is not the final safe zone, we call it evolv-

ing safe zone and denote it as Ze. For each object

o, we compute its impact region (lines 3 and 4). The

Voronoi cell is constructed using Algorithm 1 in [12].

If the object o is a skyline object (i.e., q lies in IR(o))

then the evolving safe zone is updated by taking its

intersection with the impact region of o (line 6). Other-

wise if o is a non-skyline object, the evolving safe zone

must be updated by taking its intersection with IRc(o)

(the complement of the impact region of o). Note that

Ze∩IRc(o) = Ze−IR(o) which implies that we can up-

date the safe zone by subtracting IR(o) from it (line 9).

Algorithm 1 A Basic Algorithm
Input: a set of objects O, the query point q
Output: the set of skyline objects S, the safe zone Z

1: initialize safe zone Ze as the whole data universe
2: for each object o ∈ O do
3: A(o)← the set consisting of every o′ ∈ O s.t. o′�so
4: IR(o) = V or(o,A(o)) # Algorithm 1 in [12]

5: if q ∈ IR(o) then # o is a skyline object

6: Ze ← Ze ∩ IR(o)
7: add o in S
8: else # o is a non-skyline object

9: Ze ← Ze − IR(o)
10: return set of skyline objects S and safe zone Z = Ze

Possibility of a materialized approach. A possible

approach to continuously monitor the skyline queries is

to materialize the impact regions or to materialize all

possible safe zones using the impact regions of the ob-

jects. However, these materialized techniques have the

following limitations: i) the materialized approach can-

not efficiently deal with the data updates, e.g., a dele-

tion or insertion may change the affecting sets of a large

number of objects which may invalidate a large num-

ber of materialized impact regions; ii) the materialized

approach does not work if a user intends to monitor

skyline queries on a subset of data (e.g., on restaurants

that lie in a constrained region, or on the restaurants

that sell Chinese food); iii) spatial indexes such as R-

trees are useful for several spatial queries in contrast

to the materialized approach that is useful only for the

skyline queries. We also remark that a pre-built Voronoi

diagram (constructed using all data objects) is not use-

ful in computing the impact regions. This is because the

impact region of each object corresponds to a Voronoi

cell constructed using a different set of objects, i.e., its

affecting set.
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3.4 Optimizations

Algorithm 1 has the following two major limitations: i)

at line 2, the algorithm considers every object regard-

less of whether its impact region affects the shape of the

evolving safe zone or not; ii) at line 3, the algorithm

computes the affecting set of an object o by consider-

ing all the objects in O which requires traversing the

whole data set O for each object. In this section, we

present optimizations that address several limitations

of the basic algorithm including the two major limita-

tions mentioned above.

3.4.1 Using Pseudo-Impact Regions

First, we address the second limitation discussed above.

Let S be the set of skyline objects of the query q. We

prove that the safe zone can be correctly computed even

if, at line 3 of Algorithm 1, the affecting set A(o) is cre-

ated using only the skyline objects, i.e., the set consist-

ing of every object o′ ∈ S for which o′�so. This opti-

mization significantly improves the performance mainly

because the size of S is significantly smaller than the

size of O. More analytical details of its advantages are

presented later in Section 3.4.2.

Definition 4 Pseudo-affecting set. Let S be the set

consisting of all skyline objects. Pseudo-affecting set

PA(o) of an object o is a set consisting of o and every

object o′ ∈ S for which o′�so. Note that PA(o) always

includes o regardless of whether o is a skyline object or

not.

Example 3 Consider the example of Figure 2(a) where

four objects are shown according to their static dimen-

sions (price and rank). Assume that we know that the

set of skyline objects is S = {o1, o2} (the skyline ob-

jects are shown as filled circles and non-skyline ob-

jects are shown as hollow circles). While the affect-

ing set of o4 is A(o4) = {o1, o2, o3, o4}, its pseudo-

affecting set is PA(o4) = {o1, o2, o4}. For other objects,

A(o1) = PA(o1) = {o1, o2}, A(o2) = PA(o2) = {o2}
and A(o3) = PA(o3) = {o2, o3}.

Definition 5 Pseudo-impact region. Pseudo-impact

region PIR(o) of an object o consists of every point x

for which NN(x, PA(o)) = o. In other words, PIR(o)

corresponds to the Voronoi cell V or(o, PA(o)) of o con-

structed using the objects in pseudo-affecting set PA(o).

Example 4 Consider the example of Figure 2(b). The

impact region of o4 is the shaded area and it corre-

sponds to the Voronoi cell of o4 constructed usingA(o4) =

{o1, o2, o3, o4}. On the other hand, the pseudo-impact

(a) (b) (c)

Fig. 2 Pseudo Impact Region

region of o4 is the polygon ABCD that corresponds

to the Voronoi cell of o4 constructed using PA(o4) =

{o1, o2, o4}. Note that the pseudo-impact region of an

object always contains the impact region of the object,

i.e., IR(o) ⊆ PIR(o). As shown in Example 3, the

pseudo-affecting sets of other objects are the same as

their corresponding affecting sets. Hence, for those ob-

jects their impact regions are the same as their pseudo-

impact regions. Figure 2(c) shows the impact regions of

all the objects. More specifically, the impact region of

o2 corresponds to the whole data space and IR(o2) =

PIR(o2). Moreover, IR(o3) = PIR(o3) = HECJ and

IR(o1) = PIR(o1) = GFCJ .

Definition 6 Pseudo-safe zone. The pseudo-safe zone

ZP is the area that consists of every point x that lies

inside the pseudo-impact region of every skyline object

and lies outside the pseudo-impact region of every non-

skyline object. Formally, ZP = ∩oi∈SPIR(oi)
⋂
∩oj∈O−S

PIRc(oj) where PIRc(oj) denotes the complement of

PIR(oj).

Hereafter, the safe zone Z that we defined in previ-

ous section is called original safe zone if not clear by

context.

Example 5 Consider the example of Figure 2(c). In Ex-

ample 4, we listed the impact region and pseudo-impact

region of every object. The pseudo-safe zone ZP is the

area shown shaded in Figure 2(c). This is obtained

by PIR(o1) ∩ PIR(o2) ∩ PIRc(o3) ∩ PIRc(o4). Note

that the original safe zone Z can be obtained as Z =

IR(o1) ∩ IR(o2) ∩ IRc(o3) ∩ IRc(o4) and it also corre-

sponds to the shaded area of Figure 2(c).

Note that the original safe zone Z is constructed

using the impact regions whereas the pseudo-safe zone

ZP is computed using the pseudo-impact regions. Al-

though the impact region of an object is always smaller

than or equal to its pseudo-impact region (i.e., IR(o) ⊆
PIR(o)), it can be proved that the pseudo-safe zone is

always equal to the original safe zone, i.e., Z = ZP .

Due to the space limitations, we omit the proof but the

interested readers are referred to the earlier version [12]

of this paper for the proof.
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Computing pseudo-affecting set

Recall that we compute the pseudo-affecting set PA(o)

by selecting every object o′ ∈ S for which o′�so where

S consists of all skyline objects. However, this requires

computing S which may not be known. In this section,

we solve this issue as follows: We propose an access

order that guarantees that, for each object o, all the

objects in PA(o) are accessed before o (Lemma 3). Fur-

thermore, for each accessed object, we show that we can

determine whether it is a skyline object or not by using

its pseudo-impact region (Lemma 4).

Proposed access order. Assume that
∑d

i=1 o[i] is

called the static score of an object o and is denoted

as o.score. We access the objects in ascending order of

o.score. If two objects have the same static score then

we prefer the object that is closer to the query q.

Lemma 3 The above access order guarantees that, for

every accessed object o, there does not exist any skyline

object o′ that satisfies o′�so but has not been accessed

before o.

Proof. For every object o′ accessed after o, o.score ≤
o′.score. It immediately follows that o′ cannot stati-

cally dominate o (i.e., o′⊀so). Hence, o′ may only sat-

isfy o′ =s o. However, if o′ =s o then o′ cannot be a

skyline object because o satisfies o�so
′ and dist(q, o) <

dist(q, o′). This is because, according to the proposed

access order, dist(q, o) < dist(q, o′) if o.score = o′.score.

The next issue is how to determine whether an ob-

ject o is a skyline object or not. In the basic algorithm,

o is guaranteed to be a skyline object if and only if q
lies in IR(o) (line 5 of Algorithm 1). Although PIR(o)

is always at least as large as IR(o), Lemma 4 shows

that such guarantee can be provided even if PIR(o) is

used instead of IR(o).

Lemma 4 An object o is a skyline object if and only if

q lies in the pseudo-impact region PIR(o) of o.

Proof. By definition of the safe zone Z, q lies in the safe

zone Z. Since q is a point in the safe zone Z, q lies in

PIR(o) if and only if q ∈ IR(o) [12]. Since o is a skyline

object if and only if q ∈ IR(o), it immediately follows

that o is a skyline object if and only if q ∈ PIR(o).

Remark: We remark that although our proposed ac-

cess order is similar to the order used in BBS [33], it

is not the same. Let o.score + dist(q, o) be the overall

score of an object. BBS accesses the objects in ascend-

ing order of their overall scores. The example below

shows that this access order is not useful for our prob-

lem, i.e., Lemma 3 does not hold if this access order

is used. Consider the example of Figure 2 and assume

that dist(q, o1) = 1 and dist(q, o2) = 10. Assume that

the domain range for both price and rank is from 0 to 1.

Clearly, o1 will be accessed before o2 because the overall

score of o1 is smaller. However, note that o2 is a skyline

object and statically dominates o1 (see Figure 2(a)).

Algorithm 2 An Improved Algorithm
1: initialize safe zone Ze as the whole data universe
2: S = φ
3: for each object o ∈ O in ascending order of o.score (break

ties on dist(q, o)) do
4: PA(o)← set containing o and every o′ ∈ S s.t. o′�so
5: PIR(o) = V or(o, PA(o))
6: if q ∈ PIR(o) then # o is a skyline object

7: Ze ← Ze ∩ PIR(o)
8: add o in S
9: else # o is a non-skyline object

10: Ze ← Ze − PIR(o)
11: return set of skyline objects S and safe zone Z = Ze

An improved algorithm. To summarize the ideas

presented so far, Algorithm 2 presents an improved ap-

proach to construct the safe zone. The set of skyline

objects S is initially empty (line 2). At line 3, we access

the objects in the proposed order. The pseudo-affecting

set of each object is constructed using S (line 4). An

object o is added to S if q lies inside its pseudo-impact

region (line 8). For each object o, the evolving safe zone

Ze is updated by an intersection or difference opera-

tion depending on whether o is a skyline object or a

non-skyline object (line 7 and 10).

3.4.2 Discussion

Now, we analyse the impact of the optimization used in

Algorithm 2. Assuming that the values of objects in one

dimension are independent to their values in the other

dimensions, it is well known (e.g., see [33]) that the

expected number of skyline objects is O(logdN) when

the total number of objects is N and the total number

of criteria is d+ 1 (dynamic and static dimensions). In

other words, the expected size of S is O(logdN). This

reduces the cost of line 4 from O(N) to O(logdN). Fur-

thermore, since the expected size of S is significantly

smaller, we may store S in a main memory data struc-

ture (e.g., a main-memory R-tree) to speed up the com-

putation of pseudo-affecting set PA(o).

The optimization presented in this section also sig-

nificantly improves the cost of computing Voronoi cell

at line 5. This is because the expected size of pseudo-

affecting set is significantly smaller than the size of af-

fecting set as stated in the lemma below.
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Lemma 5 For any object o, let n be the number of

objects in its affecting set A(o). The expected number of

objects in its pseudo-affecting set PA(o) is O(logd n).

Proof. Assume that a skyline query is issued on only

the objects in A(o) and the returned skyline objects are

called sub-skyline objects. Clearly, the expected num-

ber of sub-skyline objects is O(logd n) assuming that

the values are independent to dimensions. Next, we

show that an object o′ ∈ A(o) is a skyline object (i.e.,

o′ ∈ S) if and only if o′ is a sub-skyline object. This

implies that o′ ∈ PA(o) if and only if o′ is a sub-skyline

object and completes the proof.

Assume that ox is an object that completely domi-

nates o′, i.e., ox�so
′ and dist(q, ox) < dist(q, o′). Since

ox�so
′, ox ∈ A(o′) which implies that ox ∈ A(o). Hence,

each object o′ ∈ A(o) can be completely dominated by

only the objects in A(o). Hence, o′ ∈ A(o) is a skyline

object if and only if o′ is a sub-skyline object.

We remark that the intersection and difference oper-

ations between Ze and PIR(o) can be conducted cheaply.

This is because PIR(o) is a Voronoi cell and the aver-

age number of edges of Voronoi cell is at most 6 [32].

Furthermore, our experiments demonstrate that the av-

erage number of edges of the safe zone is around 5 for

all data sets.

3.4.3 Pruning Irrelevant Objects

In this section, we present techniques to prune the ob-

jects that do not affect the shape of the evolving safe

zone. Furthermore, we present techniques to efficiently

update the safe zone using the pseudo-impact regions.

Lemma 6 An object o does not affect the shape of evolv-

ing safe zone Ze if its pseudo-impact region PIR(o)

does not intersect Ze.

Proof. By definition of safe zone Z, q lies in Z. Since

Z ⊆ Ze, q lies in Ze. Since PIR(o) does not intersect

Ze, it implies that PIR(o) does not contain q. Hence

o is a non-skyline object (see Lemma 4). Since o is a

non-skyline object, the updated safe zone Ze−PIR(o)

is the same as Ze. Hence, o does not change the shape

of Ze.

Let mindist(x, Ze) and maxdist(x, Ze) denote min-

imum and maximum distance of a point x from Ze,

respectively. The following two lemmas identify the ob-

jects that can be pruned.

Lemma 7 Let o′ be a skyline object such that o′�so

(i.e., o′ ∈ PA(o)). If maxdist(o′, Ze) < mindist(o, Ze)

then o does not affect shape of the safe zone and can be

pruned.

Proof. We prove that PIR(o) does not intersect with

Ze, i.e., PIR(o) does not contain any point of Ze. Let x

be a point in Ze. Sincemaxdist(o′, Ze) < mindist(o, Ze),

dist(o′, x) < dist(o, x). This implies that for every point

x ∈ Ze, NN(x, PA(o)) 6= o. Hence, by the defini-

tion of pseudo-impact region, x cannot be a point in

PIR(o).

At line 4 of Algorithm 2, an object o can be pruned

if there exist an object o′ ∈ S that satisfies the above

condition.

Lemma 8 An object o can be pruned if, for every point

x ∈ Ze, there exists a skyline object o′ such that o′�so

and dist(x, o′) < dist(x, o).

Proof. We prove that PIR(o) does not contain any

point of Ze. It can be immediately verified that for every

point x ∈ Ze, NN(x, PA(o)) 6= o because there exists

an object o′ ∈ PA(o) that is closer to x. Hence, x can-

not be a point in PIR(o) (by definition of PIR(o)).

In the conference version [12] of this paper, we show

that this pruning rule can be applied during the compu-

tation of pseudo-impact region of an object o (at line 5

of Algorithm 2).

3.4.4 Branch and Bound Algorithm

Based on the ideas presented earlier in this section, a

branch and bound algorithm can be designed. The basic

idea is to use a branch and bound data structure (e.g.,
R-tree) to index the data objects and access the entries

iteratively while pruning the entries that cannot affect

the shape of the safe zone. The pruning rules presented

earlier are extended for the entries of the R-trees. If the

accessed entry is an object and cannot be pruned, it is

used to update the safe zone. We omit the details due to

the space limitations. However, the interested readers

can see the complete algorithm along with the extended

pruning rules in an earlier version of this paper [12].

4 Continuous monitoring of top-k queries

4.1 Problem Definition

Similar to Section 3.1, we assume a set of (d + 1)-

dimensional objects O with first d static dimensions

and d+ 1-th dynamic dimension referring to dist(q, o).

Continuous Top-k Query. A top-k query returns k

objects with the lowest scores where the score of each
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object o is calculated using a given monotonic scoring

function f defined for the d + 1 dimensions of the ob-

jects. An ordered top-k query returns the top-k objects

in ascending order of their scores. In contrast, an un-

ordered top-k query returns the top-k objects but not

necessarily in the sorted order. Since the dynamic at-

tribute of each object dist(q, o) changes as the query q

changes its location, the results are needed to be con-

tinuously updated as the query moves. A continuous

ordered (resp. unordered) top-k query continuously re-

ports the ordered (resp. unordered) top-k objects for a

moving query q.

The existing techniques for static top-k queries are

usually specifically designed for a particular type of

scoring function f (e.g., weighted sum) and are not gen-

erally applicable for other types of scoring functions.

Our focus in this paper is to design a generic solution

to continuously monitor ordered and unordered top-k

queries for any arbitrary monotonic scoring function f .

We assume that all attribute values are non-negative.

Our experimental study evaluates the proposed tech-

niques for some of the most popular monotonic scoring

functions namely weighted sum, weighted product and

weighted distance. Next, we define these.

Weighted Sum [18,15]. In weighted sum scoring

function, a weight w is assigned for each attribute. The

weight of i-th attribute is denoted as w[i] where w[i] ≥ 0

and
∑d+1

i=1 w[i] = 1. Here, w[d + 1] is the weight of the

dynamic attribute (i.e., dist(q, o)) and w[i] (for 1 ≤ i ≤
d) is the weight of each static attribute o[i]. The score

of an object o with regards to the query q is denoted as

score(q, o) and is computed as follows:

score(q, o) = w[d+ 1] · dist(q, o) +

d∑
i=1

w[i] · o[i] (1)

Weighted Product [42,4,47]. Similar to weighted

sum, weighted product assigns a weight w[i] to each at-

tribute where w[i] ≥ 0 and
∑d+1

i=1 w[i] = 1. The score

using weighted product is calculated as follows:

score(q, o) = dist(q, o)w[d+1] ·
d∏

i=1

o[i]w[i] (2)

Weighted Distance [43,5,2]. Let so denote the

static score of an object which corresponds to its score

computed using only the static dimensions. The weighted

distance computes the score as follows:

score(q, o) =
dist(q, o)

so
(3)

The static score so can be computed using any mono-

tonic scoring function (e.g., weighted product of the

static dimensions). Weighted distance has been frequently

used in spatio-textual queries [43,2], where the static

score corresponds to the textual similarity between the

object and the query.

For the ease of presentation, in the rest of the pa-

per, we assume that the scoring function f is a non-

decreasing monotonic scoring function [6], i.e., the score

of an object does not decrease when its values in the

static and dynamic dimensions increase. However, our

techniques are directly applicable for other monotonic

functions, e.g., when they are non-increasing or when

they are non-decreasing w.r.t. some attributes and non-

increasing w.r.t. the remaining attributes. We say that a

function is non-decreasing (resp. non-increasing) w.r.t.

an attribute i when, assuming each o[j] for i 6= j is fixed,

the univariate function over i is non-decreasing (resp.

non-increasing). Note that weighted distance is non-

decreasing w.r.t. dist(q, o) and is non-increasing w.r.t.

the static score so assuming so is always non-negative.

4.2 Formalizing Safe Zone

Definition 7 Safe Zone. Safe zone Z of a query q is

an area such that, as long as q remains inside Z, its top-

k objects do not change (although their relative order

may change).

Once the safe zone Z of a query is computed by

the server, it is sent to the client along with the top-k

objects. The client can then locally monitor the results

as long as q is inside Z. Specifically, if q is inside Z,

the top-k objects remain the same and the results for

an unordered top-k query do not need to be updated.

For the ordered top-k query, the client locally computes

the scores of these k objects to determine their relative

order. When the query q leaves the safe zone Z, the

client sends its new location to the server that computes

a new safe zone Z and sends it back to the client along

with the top-k objects.

4.2.1 Optimal Safe Zone

The safe zone of a query q is said to be optimal if it is

the largest possible safe zone. Before we formalize the

optimal safe zone, we define the concept of preferred

region and irrelevant region.

Definition 8 Preferred Region. Given a query q and

two objects o1 and o2, the preferred region of o1 with re-

spect to o2 (denoted as PRo1:o2) is a region such that, as
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long as q is inside PRo1:o2 , score(q, o1) ≤ score(q, o2),

i.e., o1 is preferable to o2. Similarly, as long as q is in-

side the preferred region of o2 with respect to o1 (i.e.,

PRo2:o1), score(q, o2) ≤ score(q, o1).

Example 6 Figure 3(a) shows the example of some pre-

ferred regions. For simplicity, we do not show the static

dimensions of the objects. For the weighted sum scor-

ing function, the preferred region is defined by a hy-

perbola between the two objects [46,18]. However, in

this example, we do not assume any particular scoring

function and do not discuss how the preferred regions

are obtained. Assume that PRo1:o3 is the region above

the boundary shown in Figure 3(a) and PRo3:o1 is the

region below this boundary. As long as q remains in-

side PRo1:o3 , the score of o1 remains at most equal to

the score of o3. Figure 3(a) also shows preferred re-

gions PRo2:o3 (region on the right side of the curve)

and PRo3:o2 (region on the left side of the curve).

(a) Irrelevant region of o3 (b) Irrelevant region of o4

Fig. 3 Preferred and Irrelevant regions

Definition 9 Irrelevant region. Irrelevant region IRp

for an object p is the region such that, as long as q is

inside this region, p cannot be one of its top-k objects.

We call it irrelevant region of p because p is irrelevant

for the top-k query as long as q is inside this region.

Now, we describe how to compute irrelevant region

of an object p using the preferred regions. Let T be the

set of top-k objects and p be a non-result object, i.e.,

p ∈ O \ T . For each oi ∈ T , PRoi:p defines the space

where score(q, oi) ≤ score(q, p). Note that the top-k

results are not affected by p as long as q is in PRoi:p

for every oi ∈ T . In other words, p cannot be one of the

top-k objects as long as q is in
⋂
∀oi∈T

PRoi:p.

IRp =
⋂
∀oi∈T

PRoi:p (4)

Example 7 Consider the example of Figure 3 that shows

a top-2 query and five objects o1 to o5. The top-2 ob-

jects are T = {o1, o2} and the non-result objects are o3,

o4 and o5. Figure 3(a) shows the irrelevant region of o3
(see the shaded area) which corresponds to PRo1:o3 ∩
PRo2:o3 . Note that o3 cannot be among the top-2 ob-

jects as long as q is inside its irrelevant region. Fig-

ure 3(b) shows the irrelevant region for o4 (shaded area)

which corresponds to PRo1:o4 ∩PRo2:o4 . For the object

o5, assuming that PRo1:o5 is the whole data space, the

irrelevant region of o5 is PRo1:o5 ∩ PRo2:o5 = PRo2:o5

(see Figure 4(a)).

Now, we are ready to formalize the safe zone us-

ing irrelevant regions. Safe zone is the area such that,

as long as q is inside it, every non-result object p can-

not be one of the top-k objects. Assume that we have

computed the irrelevant region for each non-result ob-

ject pj ∈ O \ T . The safe zone can be obtained as the

intersection of all these irrelevant regions.

Z =
⋂

∀pj∈O\T

IRpj =
⋂

∀oi∈T ,∀pj∈O\T

PRoi:pj (5)

Example 8 Figure 4(a) shows the safe zone (shaded area)

for the query q which is the intersection of the irrele-

vant regions of o3, o4 and o5, i.e., Z = IRo3 ∩ IRo4 ∩
IRo5 = PRo1:o3∩PRo2:o3∩PRo1:o4∩PRo2:o4∩PRo1:o5∩
PRo2:o5 .

The following lemma shows that the safe zone de-

fined above is correct and optimal.

Lemma 9 Assume that it is possible to correctly com-

pute the largest possible preferred region PRoi:pj for

each pair of objects oi and pj. The safe zone Z de-

fined in Eq. (5) is the largest possible area such that:

(a) as long as q is inside Z, the set of its top-k objects

T remains the same; and (b) as soon as q leaves Z, T

is guaranteed to change.

Proof. It is easy to see that (a) is correct because q is

in PRoi:pj for every oi ∈ T and every pj ∈ O \ T which

implies that the score of each object oi in T is no worse

than the score of each non-result object pj as long as q

is in Z. To prove (b), we show that, as soon as q leaves

Z, there exists at least one non-result object pj and

one top-k object oi for which score(q, pj) < score(q, oi).

When q leaves Z, there exists at least one pair of objects

oi and pj for which q is outside PRoi:pj . Since q has

moved out of PRoi:pj
, score(q, oi) � score(q, pj).

Hereafter, we refer to the safe zone defined in Eq. (5)

as the optimal safe zone and denote it as Zopt. In our

solution, we do not compute the optimal safe zone Zopt
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due to the following challenges/problems involved: 1)

while it may be possible to compute preferred regions

for some well defined scoring functions (e.g., using hy-

perbola for weighted sum), computing the preferred re-

gions for arbitrary monotonic functions may be quite

complicated or even impossible; 2) even if preferred re-

gions can be obtained for arbitrary monotonic scoring

functions, the optimal safe zone, which is the intersec-

tion of many preferred regions, becomes an arbitrarily

complicated shape and, as a result, the complexity and

computation cost of computing the optimal safe zone

may outweigh the advantages of using it for monitor-

ing moving top-k queries; 3) since the optimal safe zone

may be an arbitrarily complicated shape, it may not be

easy for the client to check whether the query is still

inside the safe zone or not.

To address the challenges above, we underestimate

the optimal safe zone using a circle (Section 4.2.2) and

then present a relaxed definition of safe zone (Section

4.2.3) that guarantees the correctness of results but in-

creases the size of the safe zone at the expense of a

higher computation cost at client side.

4.2.2 Circular Safe Zone

We underestimate the safe zone using a circle, called

circular safe zone, which also guarantees that the top-k

objects remain the same as long as q is in it. Consider

the example of Figure 4(a) where the circle underesti-

mates the safe zone. The circular safe zone is not only

easier to obtain for arbitrary monotonic functions but

it also makes it easy for the client to check whether q is

inside this safe zone or not. Below, we formally define
the circular safe zone using preferred/irrelevant circles.

Preferred circle. Preferred circle of a top-k object oi
with respect to a non-result object p is a circle centred

at q that completely lies within PRoi:p. Preferred circle

is denoted as Coi:p and its radius is denoted as Crad
oi:p.

Irrelevant circle. Irrelevant circle of a non-result ob-

ject p is a circle centred at q that completely lies within

its irrelevant region IRp. Irrelevant circle is denoted as

Cp and its radius is denoted as Crad
p .

Note that the irrelevant circle of p is its smallest

preferred circle, i.e., Crad
p = min∀oi∈T

Crad
oi:p. As long as

q is in the irrelevant circle Cp, p cannot be one of the

top-k objects, i.e., ∀q∈Cp,oi∈T score(q, oi) ≤ score(q, p).

Example 9 In Figure 3(a) the smaller circle is the pre-

ferred circle Co2:o3 as it completely lies within PRo2:o3 .

The bigger circle in Figure 3(a) is Co1:o3 and com-

pletely lies within PRo1:o3 . The irrelevant circle Co3 is

the smaller circle in Figure 3(a) and it lies completely

within the irrelevant region of o3. Figure 3(b) shows the

two preferred circles for o4 and the smaller circle is the

irrelevant circle for o4.

In the rest of the paper, for any circle C centered

at q, we use C and Crad interchangeably and use com-

parison operators between them whenever clear by con-

text, e.g., C1 < C2 means that the radius of circle C1

is smaller than the radius of circle C2 implying that C1

is contained in C2.

Circular Safe Zone. A circular safe zone Zc corre-

sponds to the smallest irrelevant circle among the irrel-

evant circles of all non-result objects.

Zc = min∀p∈O\TCp = min∀oi∈T,pj∈O\TCoi:p (6)

Figure 4 shows the irrelevant circles of o3, o4 and

o5. Note that Co3 < Co4 < Co5 and the circular safe

zone corresponds to Co3 .

4.2.3 m-relaxed Safe Zone

Note that the circular safe zone may be significantly

smaller than the optimal safe zone. In this section, we

present a simple idea to relax the safe zone but still

guaranteeing the correctness of results.

Definition 10 m-relaxed Safe Sone (Zm). Given a

positive integer m and a set of objects M ⊆ O that

contains k+m− 1 objects, an m-relaxed safe zone Zm

corresponds to the area such that, as long as q is inside

this area, the top-k objects of the query are guaranteed

to be present in M .

Note that the safe zone defined earlier (Definition 7)

is the 1-relaxed safe zone where M contains only the

top-k objects. The optimal safe zone Zopt and the cir-

cular safe zone defined in the previous section are two

examples of the 1-relaxed safe zone. Recall that the

circular safe zone corresponds to the smallest irrelevant

circle among the irrelevant circles of all objects in O\T .

It can be shown that the m-relaxed safe zone corre-

sponds to the m-th smallest irrelevant circle where M

consists of all top-k objects and the objects related to

the (m− 1) smallest circles.

Example 10 Figure 4(b) shows the irrelevant circles of

o3, o4 and o5 for our running example of a top-2 query.

For simplicity, we only show the preferred regions that

define these irrelevant circles. The shaded area is the

optimal safe zone. The smallest irrelevant circle Co3 is 1-

relaxed safe zone Z1 and its corresponding M contains

only the top-2 objects o1 and o2. The 2-relaxed safe zone

Z2 corresponds to the second smallest circle Co4 where

M consists of the top-2 objects (o1 and o2) and the
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(a) Safe zone (b) m-relaxed Safe zone

Fig. 4 Safe zone and m-relaxed safe zone

object related to the smallest irrelevant circle, i.e., o3.

Note that, as long as q is inside Z2, the top-2 objects

are among o1, o2 and o3. The 3-relaxed safe zone Z3

corresponds to the third smallest irrelevant circle Co5

where M consists of the top-2 objects (o1 and o2) and

the two objects (o3 and o4) related to the two smallest

irrelevant circles. It is easy to see that the top-2 objects

are among these four objects as long as q remains inside

Z3. The 4-relaxed safe zone Z4 corresponds to the whole

data space and M consists of all objects.

In our solution, the m-relaxed safe zone Zm is com-

puted and sent to the client along with the set of objects

M . The client then can locally monitor the top-k ob-

jects by computing the scores of these k+m−1 objects

at each timestamp. When the client leaves Zm, it re-

quests the server to send it a new Zm along with the

set of objects M . Note that a larger value of m results

in a bigger safe zone thus requiring the server to recom-

pute the safe zone less often and potentially reducing

the overall continuous monitoring time at the server.

However, this also results in an increase in the com-

putation cost at the client side as the client needs to

compute the scores of k+m− 1 objects at each times-

tamp. We do not discuss how to choose an appropriate

value of m and treat it as a user defined parameter

because it is application specific and depends on the

processing power of the client device and whether the

goal is to reduce the computation cost at the server or

at the client.

4.3 Computing m-relaxed Safe Zone

One major challenge in computing the m-relaxed safe

zone Zm is how to efficiently compute the preferred and

irrelevant circles for arbitrary monotonic scoring func-

tions. In Sections 4.3.2, 4.3.3 and 4.3.4, we present our

novel techniques to efficiently compute the preferred

and irrelevant circles. However, first we present our al-

gorithm to compute Zm in order to provide a high level

overview to the readers. Hereafter, we use safe zone to

refer to m-relaxed safe zone whenever clear by context.

4.3.1 Algorithm

A straightforward approach to compute Zm is to com-

pute the irrelevant circles for all non-result objects and

maintaining the m-smallest circles. In this section, we

present an efficient safe zone computation algorithm

that does not require computing the irrelevant circles

for all non-result objects. The algorithm assumes that

the set of objects O is indexed using a branch-and-

bound data structure such as R-tree. First, we present

a simple pruning rule that allows pruning an entry e of

the R-tree.

Definition 11 Minimum (resp. maximum) score.

Given a query q, an entry e of the R-tree, and a

circle C, the minimum (resp. maximum) score of e

with respect to C, denoted as minScore(e, C) (resp.

maxScore(e, C)), is the smallest (resp. largest) possi-

ble score of any object p ∈ e considering that location

of the query q can be anywhere in C. Since the scoring

function is non-decreasing monotonic, minScore(e, C)

(resp.maxScore(e, C)) is obtained using smallest (resp.

largest) static value of e in each dimension and consid-

ering distance to be the minimum (resp. maximum) dis-

tance between e and C denoted as mindist(e, C) (resp.

maxdist(e, C)).

Lemma 10 Let e be an R-tree entry e, C be a

circle containing q, and oi be a top-k object. If

maxScore(oi, C) ≤ minScore(e, C) then, for every ob-

ject p ∈ e, score(q, oi) ≤ score(q, p) as long as q is

inside the circle C.

Proof is straightforward and is omitted. In our al-

gorithm, we initialize the safe zone Zm to be the whole

data space and iteratively update it as we compute the

irrelevant circles of objects. The following lemma for-

malizes a condition to prune an entry e of the R-tree.

Lemma 11 Let e be an R-tree entry e, Zm be the

current safe zone and T be the set of top-k objects.

No object p ∈ e can affect the shape of Zm (i.e.,

e can be safely pruned) if ∀oi∈TmaxScore(oi, Zm) ≤
minScore(e, Zm).

Proof. We prove this by showing that, for every p ∈ e,
the irrelevant region IRp completely contains Zm which

implies that the safe zone Zm can be correctly com-

puted without considering p. Note that for every ob-

ject oi ∈ T and every location of q in Zm, we have

score(q, oi) ≤ score(q, p) (Lemma 10). This implies

that every location q ∈ Zm is contained in the irrel-

evant region IRp.
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Now, we present our safe zone computation algo-

rithm (Algorithm 3). The algorithm initializes Zm to

be the whole data space (line 1). The set M and set of

top-k objects T are both initialized to be empty (line 2).

A min-heap h is initialized with the root entry of the

R-Tree (line 3). For each de-heaped entry e, we check

if it can be pruned using Lemma 11 (line 6). If e is not

pruned and is an intermediate or leaf node of the R-

tree, we insert each of its children c in the min-heap h

(line 9). The key for each child c is set to be its minimum

score minScore(q, c) where minimum score is computed

using the minimum distance from q to c and the small-

est static value of the entry c in each dimension. This al-

lows accessing objects in ascending order of their scores

which has the following advantages: 1) It guarantees

that the first k objects retrieved from the min-heap h

are the top-k objects; 2) The non-result objects with

smaller scores are expected to have smaller irrelevant

circles because they have scores closer to the scores of

top-k objects thus are expected to have smaller pre-

ferred regions. Therefore, accessing the non-result ob-

jects in ascending order of minimum scores is expected

to shrink Zm quicker and thus allowing more effective

pruning of the entries in R-Tree using Lemma 11.

Algorithm 3 getSafeZone(q,O,m)

Input: query q; a set of objects O indexed using an R-Tree;
a parameter m
Output: Safe zone Zm and a set of objects M

1: Zrad
m ←∞

2: T ← φ; M ← φ
3: initialize a min-heap h with root of R-tree
4: while h is not empty and Zrad

m 6= 0 do
5: de-heap an entry e
6: if e cannot be pruned then # Lemma 11

7: if e is a node of R-tree then
8: for each child c of e do
9: insert c in h with key minScore(q, c)

10: else # e is an object

11: if T contains less than k objects then
12: insert e in both T and M
13: else
14: Ce ← getIrrelevantCircle(e) # Algorithm 6

15: if Crad
e < Zrad

m then
16: update m smallest irrelevant circles and M
17: Zm ← m-th smallest irrelevant circle
18: MScore← argmaxoi∈T maxScore(oi, Zm)
19: return Zm and M

If the de-heaped entry e cannot be pruned and is

an object, we insert it in the set of top-k objects T

and M if T contains less than k objects (line 12). This

is because the first k objects retrieved from the min-

heap h are guaranteed to be the top-k objects. If e

is not a top-k object, we compute its irrelevant circle

by calling Algorithm 6 presented later in Section 4.3.4

(line 14). If the irrelevant circle of e is smaller than the

current safe zone Zm, we update M and the m smallest

irrelevant circles as required (line 16). The safe zone Zm

is updated to be the m-th smallest circle (line 17). The

algorithm terminates when the heap becomes empty

and returns the safe zone Zm and the set of objects M

(line 19).

Note that pruning an entry e using Lemma 11 takes

O(k) as it requires comparing minScore(e, Zm) with

maxScore(oi, Zm) for each oi in the top-k objects. To

reduce the cost to O(1), whenever the safe zone Zm

is updated, we compute argmaxoi∈T maxScore(oi, Zm)

calledMScore (line 18). While computingMScore takes

O(k), once MScore is computed, Lemma 11 can be

applied in O(1) by comparing minScore(e, Zm) with

MScore. Since the number of times the safe zone Zm is

updated (line 17) is significantly smaller than the num-

ber of entries for which Lemma 11 is applied (line 6),

this reduces the overall cost. The algorithm terminates

when the heap h becomes empty or when the safe zone

radius is determined to be zero (which may happen if

all m objects have irrelevant circles with zero radii).

As stated earlier, the key challenge is to compute the

irrelevant circle for an object p (line 14) for arbitrary

monotonic functions. In Section 4.3.3 and Section 4.3.4,

we present the details of how to efficiently compute the

preferred circles and irrelevant circle of an object, re-

spectively. However, first we present an algorithm to

trim a rectangle using a preferred region which is a key

module to compute preferred and irrelevant circles.

4.3.2 Trimming Rectangle Using a Preferred Region

Our algorithms to compute preferred/irrelevant circles

rely heavily on a function that trims a rectangle R by

pruning the part of R that is guaranteed to lie within a

preferred region. Formally, given a rectangle R, a top-k

query q with an arbitrary monotonic scoring function,

and two objects oi and p, the function trimRectangle

prunes the part of the rectangle that is guaranteed to be

contained inside PRoi:p and returns a trimmed rectan-

gle Rt which is a minimum bounding rectangle (MBR)

of the unpruned area of R.

Let minScore(o,R) and maxScore(o,R) be defined

as in Definition 11 except that the circle C is replaced

with a rectangle R and the R-tree entry e is replaced

with an object o. Lemma 12 defines a condition that, if

satisfied, prunes the whole rectangle R, i.e., an empty

rectangle is returned by trimRectangle.

Lemma 12 Given a rectangle R and two objects oi and

p, R completely lies inside PRoi:p if maxScore(oi, R) ≤
minScore(p,R).
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Proof. Note that ∀q∈Rscore(q, oi) ≤ score(p,R) imply-

ing that each location q ∈ R is in PRoi:p.

Lemma 12 either prunes the whole rectangle R or

does not prune any part of it.

Example 11 Consider two objects o1 and p (see Fig-

ure 5(a)) having only one static dimension with val-

ues o1[1] = 20 and p[1] = 80. Assume that the scor-

ing function is a weighted sum where weight for both

static and dynamic dimensions is 0.5, i.e., score(q, o) =

o[1]×0.5+dist(q, o)×0.5. Assumemaxdist(o1, R) = 100

and mindist(p,R) = 20. Then, maxScore(o1, R) =

20 × 0.5 + 100 × 0.5 = 60 and minScore(p,R) = 80 ×
0.5 + 20 × 0.5 = 50. Lemma 12 cannot prune any part

of R because maxScore(o1, R) > minScore(p,R).

Note that maxScore(oi, R) is computed assuming

q is located at the furthest corner of R from oi (e.g.,

corner c for o1 in Figure 5(a)) whereas minScore(p,R)

is computed assuming q is located at the closest point

in R from p (e.g., corner b for p in Figure 5(a)). In other

words, the pruning condition in Lemma 12 is loose be-

cause it potentially assumes q to be at two different

locations for oi and p. An optimal containment check

will consider the scores for both oi and p assuming

the same location of q in R, i.e., ∀q∈Rscore(oi, p) <

score(p, q). Although developing an optimal check for

generic monotonic functions may be impossible, below

we present an improved and more effective check which

helps pruning the part of R (or even the whole R) con-

tained in PRoi:p. First, we define relative distance.

(a) Prunes whole R (b) Shaded area is unpruned

Fig. 5 Illustration of trimming a rectangle

Definition 12 Relative Distance. Given a value s,

an object o and a query q with a monotonic scoring

function, the relative distance of o w.r.t. s denoted as

relDistso is the distance such that score(q, o) = s if

dist(q, o) = relDistso.

Example 12 In Figure 5(a), relative distance of o1 w.r.t.

score 50 is relDist50o1 = 80. This is because if dist(q, o1) =

80, score(q, o1) = 20×0.5+80×0.5 = 50. Similarly, rel-

ative distance of p w.r.t. score 60 is relDist60p = 40 and,

if dist(q, p) = 40, score(q, p) = 80×0.5 + 40×0.5 = 60.

Lemma 13 Given an object o, a value s and a query

q with a non-decreasing monotonic scoring function,

score(q, o) ≥ s for every location of q for which

dist(q, o) ≥ relDistso. Similarly, score(q, o) ≤ s for ev-

ery location of q for which dist(q, o) ≤ relDistso.

The proof is straightforward and is omitted. In Fig-

ure 5(a), relDist60p = 40 and the dotted circle is cen-

tered at p with radius 40. If q lies outside the dotted

circle, score(q, p) ≥ 60 and, if q lies inside the dot-

ted circle, score(q, p) ≤ 60. Recall from Example 11

that maxScore(o1, R) = 60. This implies that, for ev-

ery query location q ∈ R that lies outside the dotted

circle, score(q, o1) ≤ maxScore(o1, R) ≤ score(q, p). In

other words, the part of R that lies outside the dotted

circle is contained in PRoi:p. Therefore, the part of R

that lies outside the dotted circle of p can be pruned

and the rest of the rectangle R remains unpruned by p

(denoted as unpruned(p)). In Figure 5(a), unpruned(p)

is the dark shaded area. Below, we formally present this

observation.

Lemma 14 Given a query q with a non-decreasing

monotonic scoring function and two objects oi and

p, every point x ∈ R for which dist(p, x) ≥
relDist

maxScore(oi,R)
p is guaranteed to lie inside PRoi:p,

i.e., if q is located at x, score(q, oi) ≤ score(q, p).

The proof is omitted as it is straightforward given

Lemma 13. While Lemma 14 prunes the rectangle using

the object p, the next lemma prunes it using the object

oi.

Lemma 15 Given a query q with a non-decreasing mono-

tonic scoring function and two objects oi and p, every

point x ∈ R for which dist(oi, x) ≤ relDistminScore(p,R)
oi

is guaranteed to lie in PRoi:p, i.e., if q is located at x,

score(q, oi) ≤ score(q, p)

Proof. As per Lemma 13, if q is located at x,

score(q, oi) ≤ minScore(p,R). Thus, score(q, oi) ≤
score(q, p).

In Figure 5(a), the circle shown in solid line has the

radius equal to relDist
minScore(p,R)
oi = relDist50o1 = 80.

For every location q ∈ R which is inside this circle,

score(q, oi) ≤ 50 ≤ minScore(p,R) implying that it

lies inside PRoi:p. Therefore, the shaded (both light

and dark) part of R lies inside PRoi:p and can be

pruned by object oi. Recall that the dark shaded area

is unpruned(p), the area that was unpruned by p. The
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unpruned(p) is pruned by oi. In other words, the whole

rectangle is pruned by either p or oi.

Algorithm 4 trimRectangle(R,p, oi)

Input: two objects p and oi; a rectangle R
Output: A trimmed rectangle Rt

1: if maxScore(oi, R) ≤ minScore(p,R) then
2: return φ

3: Cirp ← circle of p with radius relDist
maxScore(oi,R)
p

4: Ciroi
← circle of oi with radius relDist

minScore(p,R)
oi

5: unpruned← (R ∩ Cirp)− Ciroi

6: Rt ← MBR of unpruned
7: return Rt

Algorithm 4 illustrates how we apply the ideas pre-

sented in this section and return a trimmed rectangle

Rt that cannot be pruned. First, we apply Lemma 12

to prune the whole rectangle and return φ (line 2)

if maxScore(oi, R) ≤ minScore(p,R). If Lemma 12

does not prune the rectangle, we compute the cir-

cles of p and oi with radii equal to the relative dis-

tances (lines 3 and 4). Note that (R ∩ Cirp) repre-

sents unpruned(p), the area that is not pruned by p

(e.g., the dark shaded area in Figure 5(a)). The part of

unpruned(p) that lies inside Ciroi can be pruned (as

described earlier). Therefore, the unpruned area can be

obtained as (R∩Cirp)−Ciroi (line 5). In Figure 5(a),

the unpruned area is empty. On the other hand, in Fig-

ure 5(b) where a different object p′ is used, the un-

pruned area of R is the area shown shaded. The algo-

rithm creates an MBR of the unpruned area and returns

it (see Rt in Figure 5(b)).

Note that if the trimming results in reducing the

size of the rectangle R (i.e., if Rt 6= R), we can re-

cursively use the ideas presented above to further trim

the rectangle Rt. This is because minimum and maxi-

mum distances from p and oi to Rt (and consequently

minimum/maximum scores and relative distances) may

have changed resulting in further pruning possible. For

example, in Figure 5(b), if Lemma 12 is used to pruned

Rt, it may prune the whole rectangle Rt. However, we

do not use this idea of recursively trimming the rect-

angle in Algorithm 4 because, as we show later, our

algorithm to compute preferred circle iteratively calls

trimRectangle to prune smaller rectangles as required.

We remark that obtaining the relative distance is

typically straightforward for most of the monotonic

scoring functions. However, if it is not easily obtain-

able for some complex monotonic scoring functions, the

algorithm can be modified to use only Lemma 12.

4.3.3 Preferred Circle Computation

Note that radius of a valid preferred circle Coi:p is at

most equal to the minimum distance from q to the

preferred region PRp:oi denoted as mindist(q, PRp:oi),

e.g., in Figure 3(a), the preferred circle Co2:o3 is the

smaller circle shown in thick line and its radius is

equal to the minimum distance from q to the bound-

ary of PRo3:o2 . Any circle centered at q with radius

smaller than or equal to mindist(q, PRp:oi) is a valid

preferred circle. If the monotonic scoring function is

well defined (e.g., weighted sum), the largest possible

preferred circle can be computed by setting its radius

to be mindist(q, PRp:oi). However, for arbitrary mono-

tonic scoring functions, it may not be possible to com-

pute mindist(q, PRp:oi) because the preferred region is

unknown. In this section, we show how to compute a

valid preferred circle for any arbitrary monotonic scor-

ing function.

First, we present the intuition using the example

of Figure 6(a) that shows a top-k object o1 and a

non-result object p along with the preferred regions

PRo1:p and PRp:o1 . Assume that the whole data space

is covered by non-overlapping rectangles as shown in

Figure 6(a) where each shaded rectangle lies com-

pletely inside PRo1:p. Let R denote the set of rect-

angles that do not completely lie inside PRo1:p, i.e.,

they either overlap with the boundary of PRp:o1 or

lie completely in PRp:o1 (e.g., the white rectangles in

Figure 6(a)). Note that mindist(q, PRp:o1) is bigger

than or equal to the smallest minimum distance from

q to these white rectangles, i.e., mindist(q, PRp:o1) ≥
min∀Ri∈Rmindist(q,Ri). This distance can be used to

create a valid preferred circle. In Figure 6(a), the min-

imum distance from q to the rectangle R1 (the small

rectangle shown in thick lines) defines the preferred cir-

cle and, as long as q is inside this circle, score(q, o1) ≤
score(q, p), i.e., a circle centred at q with radius equal

to mindist(q,R1) is a valid preferred circle Co1:p.

(a) (b)

Fig. 6 Computing preferred circles Co1:p and Co2:p
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Using the intuition presented above, we compute

the preferred circle by iteratively dividing the data

space into smaller rectangles and pruning the rectan-

gles that completely lie within PRoi:p (shaded rectan-

gles in Figure 6). The unpruned rectangles (white rect-

angles) are accessed in ascending order of their mini-

mum distances from q. When the number of rectangles

processed is greater than a threshold x or an accessed

rectangle Ri is sufficiently small (e.g., its side length is

at most ε), we return its minimum distance from q (i.e.,

mindist(q,Ri)) as the radius of the preferred circle.

Algorithm 5 getPreferredCircle(p, oi, maxR)

Input: two objects p and oi; maximum radius maxR
Output: A circle centered at q with radius at most maxR
that lies completely inside the preferred region PRoi:p

1: Rtiny ← MBR of a circle centered at q with radius ε/2
2: if trimRectangle(Rtiny, p, oi) = Rtiny then
3: return Coi:p with radius 0
4: R← MBR of a circle centered at q with radius maxR
5: Rt ← trimRectangle(R, p, oi) # Algorithm 4

6: if Rt 6= φ and mindist(q,Rt) < maxR then
7: initialize a min-heap h by inserting Rt

8: while h is not empty do
9: de-heap an entry e

10: if side length of e ≤ ε or # of iterations > n then
11: return Coi:p with radius mindist(q, e)
12: for each child rectangle Rc of e do
13: Rt ← trimRectangle(Rc, p, oi) # Algorithm 4

14: if Rt 6= φ and mindist(q,Rt) < maxR then
15: insert Rt in h with key mindist(q,Rt)
16: return Coi:p with radius maxR

Algorithm 5 shows the details of computing the

preferred circle Coi:p. The algorithm takes maxR as

one of the arguments which serves as an upper bound

on the radius of the preferred circle computed by the

algorithm. As we show later in Section 4.3.4, bound-

ing the radius improves the efficiency of the algorithm

that computes the irrelevant circle. We illustrate the

algorithm using Figure 6 assuming that maxR in Fig-

ure 6(a) is infinity and maxR in Figure 6(b) is the ra-

dius of the circle shown in broken line. Note that any

trimmed rectangle Rt can be pruned if: (i) Rt is empty;

or (ii) if mindist(q,Rt) ≥ maxR. (i) implies that the

whole rectangle lies inside PRoi:p (shaded rectangles in

Figure 6) and (ii) implies that the rectangle Rt can-

not define the radius of the preferred circle which is

bounded from above by maxR. For simplicity of illus-

tration, we assume that, for each rectangle Ri in Fig-

ure 6, trimRectangle either prunes the whole rectangle

or does not prune any part of it, i.e., Rt is either empty

or equals Ri.

We explain lines 1 to 3 of Algorithm 5 towards the

end. The algorithm creates (see line 4) an MBR R of the

circle centered at q with radius equal to maxR (see the

rectangle shown using broken lines in Figure 6(b)). If

maxR is infinity, the MBR is assumed to be the whole

data space (as in Figure 6(a)). The rectangle R is then

trimmed using Algorithm 4. If Rt can be pruned (i.e.,

Rt is empty or mindist(q,Rt) ≥ maxR), the algorithm

returns a preferred circle Coi:p with radius equal to

maxR (see lines 6 and 16). If the trimmed rectangle

Rt cannot be pruned, a min-heap h is initialized by in-

serting Rt in it (line 7). The key of each entry in the

min-heap is its minimum distance from the query q. For

each de-heaped entry e, if its side length is greater than

ε, it is divided into four equal child rectangles (line 12).

Each child rectangle Rc is trimmed and is pruned if Rt

is empty or mindist(q,Rt) ≥ maxR. For example, each

shaded rectangle in Figure 6 is pruned. If the trimmed

rectangle Rt cannot be pruned, we insert it in the min-

heap h with key set to mindist(q,Rt) (line 15). In Fig-

ure 6, all the white rectangles are inserted in the min-

heap h.

If a de-heaped entry e has side length at most equal

to ε or if the number of iterations is greater than a

threshold n, we return a preferred circle with radius

set to mindist(q, e) (line 11). Note that each remaining

entry e′ in the heap has mindist(q, e′) ≥ mindist(q, e).
Therefore, the returned value corresponds to the small-

est distance from q to a rectangle that does not com-

pletely lie within PRoi:p. In other words, the algorithm

correctly computes the radius of the preferred circle. In

each of Figure 6(a) and Figure 6(b), mindist(q,R1) is

the radius of the preferred circle Coi:p. At any stage,

if the heap becomes empty, the algorithm returns Coi:p

(line 16) which corresponds to the preferred circle with

radius maxR.

Let Rtiny be a rectangle containing q with side

length at most ε. If the rectangle cannot be trimmed

by trimRectangle, the algorithm will eventually re-

turn preferred circle with radius mindist(q,Rtiny) = 0

(at line 11). However, before returning this, the algo-

rithm will need to process all ancestors of this rectangle

which results in un-necessary computations. To avoid

this, at the beginning, we create Rtiny (line 1) and re-

turn a preferred circle with radius zero if Rtiny cannot

be trimmed (line 3).

4.3.4 Irrelevant Circle Computation

A straightforward approach to compute the irrelevant

circle for an object p is to compute its preferred circle

Coi:p for each top-k object oi using Algorithm 5 and

maintaining the smallest preferred circle as the irrele-

vant circle. We present our algorithm to compute irrel-
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evant circle (Algorithm 6) that uses some optimizations

to improve the efficiency.

Recall that Algorithm 3 iteratively computes irrel-

evant circles of non-result objects and, when smaller

irrelevant circles are found, it updates Zm to be the m-

th smallest irrelevant circle. Therefore, a newly accessed

non-result object p does not affect Zm if its irrelevant

circle is bigger or equal to Zm. Therefore, we bound

from above the irrelevant circle of each newly accessed

non-result object p to be Zm (see line 1 of Algorithm 6).

We compute the preferred circle Coi:p for each top-k ob-

ject oi and update the irrelevant circle if a smaller pre-

ferred circle is found (lines 2 to 4). Specifically, at each

iteration, we call Algorithm 5 to compute the preferred

circle and pass the radius Crad
p of the current irrelevant

circle Cp as the maxR parameter (line 3). This serves

as an upper bound for the radius of the preferred circle

Coi:p to be computed by Algorithm 5. This is because

Cp corresponds to the smallest preferred circle and we

do not need to compute a preferred circle that is bigger

than Cp. This reduces the data space for the preferred

circle computation algorithm. The irrelevant circle Cp

is updated to be Coi:p (line 4) because Coi:p computed

at line 3 is smaller than or equal to Cp. At any stage,

if the radius of Cp becomes zero, the algorithm returns

Cp (line 5) without processing other top-k objects.

Example 13 Consider the example of Figure 6 where

the irrelevant circle of p is to be computed using two

top-k objects o1 and o2. Assume that we first com-

pute Co1:p as shown in Figure 6(a). When we call Algo-

rithm 5 to compute Co2:p, we pass the radius of Co1:p as

maxR parameter (see the circle shown in broken line

in Figure 6(b)). This bounds the data space (see the

rectangle in Figure 6(b)) and the algorithm may termi-

nate quicker (because it initializes the min-heap using

a smaller rectangle).

Algorithm 6 getIrrelevantCircle(p)

1: Cp ← Zm # irrelevant circle initialized to safe zone

2: for each top-k object oi in descending order of scores do
3: Coi:p ← getPreferredCircle(p, oi, Crad

p ) # Algorithm 5

4: Cp ← Coi:p

5: if Crad
p = 0 then return Cp

6: return Cp

Finally, note that the top-k objects that have higher

scores are expected to generate smaller preferred circles

(because they are expected to have smaller preferred re-

gions). Therefore, we compute the preferred circles by

accessing the top-k objects in descending order of scores

(line 2 in Algorithm 6) so that the smallest preferred

circle can be obtained earlier thus reducing the upper

bound (i.e., Crad
p ) for Algorithm 5 passed as an argu-

ment at line 3 of Algorithm 6.

Example 14 In Figure 6, assume that we first compute

the preferred circle Co2:p which is the small circle in Fig-

ure 6(b). When we compute the preferred circle Co1:p,

we will pass the radius of Co2:p as maxR parameter to

Algorithm 5 which will create a rectangle R as MBR

of Co2:p and trim it (see lines 4 and 5 in Algorithm 5).

Although this rectangle R is not shown in Figure 6(a),

the readers can see that such rectangle would lie com-

pletely inside the preferred region PRo1:p. Therefore,

Algorithm 5 will terminate without inserting any rect-

angle in the heap (and will return a circle with radius

maxR which is the radius of Co2:p).

4.4 Discussion

4.4.1 An alternative approach and its limitations

k-skyband [33] consists of every object o that is dom-

inated by at most k − 1 other objects. k-skyband is a

natural extension of skyline, i.e., skyline is 1-skyband.

It is well-known that the top-k objects for any mono-

tonic scoring function are guaranteed to be found in

the k-skyband [30,13]. Thus, an alternative approach

to monitor top-k queries is to extend the techniques

presented in Section 3 to create a safe zone for the k-

skyband guaranteeing that the k-skyband remains un-

changed as long as q remains inside the safe zone. Thus,

as long as q is inside, the top-k objects can be locally

computed by the client by recomputing the scores of

the objects in the k-skyband. However, this approach

is inferior to the m-relaxed safe zone and suffers from

several limitations as described below.

Firstly, the m-relaxed safe zone guarantees that the

top-k objects are within the k + m − 1 objects, thus,

the value of m can be adjusted considering the com-

putational power of a client. On the other hand, the

k-skyband cannot guarantee a fixed number of objects

to be sent to the client. Consequently, the safe zone con-

structed using the k-skyband may be ineffective. E.g.,

in the worst case, the k-skyband may consist of all ob-

jects thus making it infeasible for the client to locally

update the results.

Secondly, since size of the k-skyband is typically

much larger than k + m − 1, the safe zone for the k-

skyband is expected to be much smaller than the m-

relaxed safe zone. This is because the safe zone based

on the k-skyband needs to guarantee that a larger num-

ber of objects remain the result (i.e., k-skyband) of

the query. For example, our experimental study shows

that the safe zone for the skyline spans around 1 to
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2 kms (Figure 11) whereas the m-relaxed safe zone is

more than an order of magnitude bigger (e.g., see Fig-

ure 13(c)). For this reason, as shown in our experimen-

tal study, the cost of monitoring skyline is much higher

(e.g., a few milliseconds per timestamp on average) than

the cost of monitoring top-k queries using them-relaxed

safe zone (e.g., a few microseconds per timestamp).

Finally, shape of the safe zone for the k-skyband

may be a complex polygon requiring higher computa-

tional cost for the client to check whether it is still inside

the safe zone or not. In contrast, them-relaxed safe zone

is always a circle requiring O(1) to check containment.

4.4.2 Generalizing the proposed solution

Our proposed solution does not only apply to the top-k

queries for arbitrary monotonic scoring functions but it

also provides a framework that can be used to create

relaxed (i.e., larger) safe zones for various other types

of queries such as k nearest neighbors (kNN) queries

and skyline queries etc. The proposed ideas can also be

generalized for other distance metrics such as Manhat-

tan distance, network distance in road networks or for

multidimensional space for the locations of query and

objects. In the rest of this section, we abuse the concept

of a circle Cx centered at x with radius r to refer to the

data space such that, for every p ∈ Cx, dist(x, p) ≤ r

and, for every p′ /∈ Cx, dist(x, p′) > r where dist(x, p) is

the distance between x and p considering the distance

metric used by the query (e.g., Euclidean distance in

3d space, Manhattan distance, or network distance).

Below, we briefly describe the generalization needed to

adapt our solutions for other settings.

Recall that, for a top-k query, we define preferred

region of o1 w.r.t. o2 to be a region such that as

long as q is in this region, o1 is preferred over o2, i.e,

score(q, o1) ≤ score(q, o2). The preferred region can be

generalized for other queries by appropriately defining

preference of o1 over o2. E.g., for kNN queries, o1 is

preferred over o2 if dist(q, o1) ≤ dist(q, o2). For skyline

queries, o1 is preferred over o2 if o1 dominates o2. Irrel-

evant region of a non-result object p is generalized to be

a region such that, as long as q is inside it, p cannot be

the result of the query. The preferred/irrelevant circle is

then immediately generalized based on the generalized

definitions of preferred/irrelevant region.

Our algorithm to compute the m-relaxed safe zone

(Algorithm 3) can then be easily extended. The prun-

ing rule at line 6 can be applied by appropriately mod-

ifying the definitions of minimum and maximum scores

minScore(e, C) and maxScore(e, C). The algorithm to

compute the preferred circle can be immediately ap-

plied except that a hyperrectangle is used for the d-

dimensional space and, in each iteration, a hyperrectan-

gle is divided into 2d child rectangles. This idea is appli-

cable for road networks as long as minimum and max-

imum network distances to the child rectangles can be

computed efficiently. Alternatively, for road networks, a

road network branch and bound index (e.g., G-tree [50])

can be used instead of a rectangle. Algorithm 4 which

trims an entry (i.e., a rectangle or a G-tree node) can

be modified to use only Lemma 12 which either prunes

the whole entry or does not prune any part of it. Fi-

nally, the algorithm to compute the irrelevant circle is

the same where it computes the preferred circle of p

w.r.t. each result object of the query.

Let |T | be the number of objects in the query result

(e.g., k for a kNN query or skyline size for a skyline

query). The m-relaxed safe zone returns the client a set

of |T |+m − 1 objects guaranteeing that the results of

the query can be found within these |T |+m− 1 objects

as long as the query is inside the m-relaxed safe zone.

We remark that our algorithm to continuously mon-

itor skyline presented in Section 3 is superior to this

generalized algorithm. This is because the generalized

algorithm requires the client to process |T |+m− 1 ob-

jects at each timestamp to get the up-to-date skyline.

On the other hand, the algorithm in Section 3 does not

require any computation at the client as long as q is in-

side the safe zone because the skyline is guaranteed to

be unaffected. However, an advantage of the generalized

approach presented in this section is that it provides a

single implementation that can be used to monitor var-

ious different queries under different setting by using

appropriate functions/modules.

5 Experiments

Modern computers have main memories large enough

to accommodate typical spatial data sets. However, the

IO cost may still be of interest in the applications where

the indexed data (e.g., R-trees) is kept in the secondary

memory, in which case, an algorithm that only accesses

a small part of the indexed data may be preferable.

To cover both types of applications, we measure the

performance in terms of the CPU cost as well as the

number of R-tree nodes accessed.

5.1 Moving skyline queries

5.1.1 Competitors

A näıve approach to monitor moving skyline queries is

to compute the safe zone as we described in the basic

algorithm (Algorithm 1). Another näıve approach is to
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call existing algorithms such as BBS [33] to re-compute

the skyline at each timestamp. However, our experi-

ments demonstrated that both of these perform quite

poorly (e.g., both algorithms are almost three orders of

magnitude worse than our algorithm).

For a strict evaluation of our algorithm, we specially

design the supreme algorithm that assumes the exis-

tence of an oracle and meets the lower bound IO cost.

Specifically, we assume that there exists an oracle that

computes the safe zone without incurring any IO or

CPU cost. The supreme algorithm uses BBS [33] to

compute the skyline objects and assumes that the or-

acle returns it the safe zone. The results are updated

by calling BBS again only when the query leaves the

safe zone. Note that the cost of computing the skyline

objects is the lower bound cost for every algorithm that

computes the safe zone. Since BBS has been shown to

be IO optimal [33] for skyline queries where the data is

indexed by an R-tree, the supreme algorithm meets the

lower bound IO cost for the safe zone computation. Our

experimental results demonstrate that the performance

of our algorithm is reasonably close to the supreme al-

gorithm.

5.1.2 Experimental setup

Our evaluation framework is similar to the framework

used in existing safe zone based techniques [11,48,31]

for continuous spatial queries. Table 2 shows the param-

eters we use in our experiments and the default values

are shown in bold.

Table 2 System Parameters

Parameter Range

Number of objects (×1000) 50, 75, 100, 125, 150
Dimensionality of R-tree 3, 4, 5, 6
Speed of queries in km/hr 40, 60, 80, 100, 120
Distribution on static dimen-
sions

unif, norm, corr, anti

The objects are indexed by a disk-resident R-tree

with node size set to 4096 bytes. The dimensionality

of the objects vary from 3 to 6 (including two loca-

tion coordinates). We generate different data sets each

following a different distribution on static dimensions,

i.e., Uniform (unif for short), Normal (norm), Corre-

lated (corr) and Anti-correlated (anti) [8]. The loca-

tion coordinates of the objects are extracted from a

real dataset [1] that contains 175, 813 points of interest

(POIs) in North America and corresponds to a data uni-

verse of 5000Km×5000Km. To run the experiments for

varying number of objects, we randomly choose the re-

quired number of POIs from the real data set. One hun-

dred queries are generated using the popular Brinkhoff

data generator [9] that simulates cars (queries) moving

on the road network of North America. The results of

each query are monitored for 5 minutes and the exper-

iments report the average cost per timestamp.

5.1.3 Effect of data cardinality

Figure 7 studies the effect of data cardinality on both

of the algorithms. Our algorithm incurs more IOs (the

number of accessed R-tree nodes) as compared to the

supreme algorithm because our algorithm also needs

to consider the non-skyline objects to construct the

safe zone in contrast to the supreme algorithm that

only computes the skyline objects. The CPU cost of

our algorithm is higher mainly because it not only

processes non-skyline objects but also computes the

pseudo-impact regions to construct the safe zone. Nev-

ertheless, the cost of our algorithm is reasonably close

to the cost of supreme algorithm which shows the effec-

tiveness of our proposed optimizations.
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5.1.4 Effect of dimensionality

In Figure 8, we change the number of static dimensions

from 1 to 4 (the location coordinates are two dimen-

sional). It is well known [33,8] that the cost of skyline

computation algorithms significantly increases with the

increase in dimensionality. The same can be observed in

Figure 8. However, the cost of our algorithm is close to

the cost of the supreme algorithm which demonstrates

that the cost of our algorithm increases mainly because

the cost of skyline computation increases (i.e., the safe

zone construction does not add a large overhead).

5.1.5 Effect of data distribution

In Figure 9 we study the effect of data distribution.

The distribution of location coordinates does not sig-

nificantly affect the cost of the algorithms. Therefore,

we only present the results for the distributions of val-

ues on static dimensions. More specifically, Figure 9



Continuous Monitoring of Moving Skyline and Top-k Queries 21

 0.6

 3

 14

 55

 3  4  5  6

#n
od

es
 a

cc
es

se
d

Number of dimensions

Our
Supreme

(a) Node accesses

10-2

10-1

100

101

102

103

 3  4  5  6

T
im

e 
(in

 m
s)

Number of dimensions

Our
Supreme

(b) CPU time

Fig. 8 Effect of dimensionality

shows the effect of correlated (shown as corr), uniform

(unif), normal (norm) and anti-correlated (anti) dis-

tributions. In accordance with the results reported in

existing work [33,8], the skyline algorithms perform

best for correlated distribution and the worst for anti-

correlated distribution. Note that the cost of our al-

gorithm remains reasonably close to the cost of the

supreme algorithm for all data distributions.
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5.1.6 Effect of query speed

In Figure 10, we run the experiments where the aver-

age speed of queries varies from 40 km/hr to 120 km/hr.

The cost increases with the increase in query speed be-

cause the queries leave their respective safe zones more

often and the safe zones are required to be recomputed

more frequently. Note that IO and CPU cost of our

algorithm is close to the cost of supreme algorithm.
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5.1.7 Effectiveness of the safe zone

Note that a safe zone based approach is not effective

if a query leaves its safe zone too frequently. Hence,

the average distance a query travels before it leaves the

safe zone is an important measure to verify the effec-

tiveness of the safe zone. In Figure 11(a), we show the

average escapee distance which is the average distance

the queries travel before leaving their respective safe

zones. Figure 11(a) shows that the average distance

varies from 1300 meters to 1900 meters. The average

escape distance decreases with the increase in data car-

dinality because the safe zone shrinks.
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If the safe zone is a very complex shape then the

clients, which usually have low computational power,

may not be able to efficiently check whether they lie

inside the safe zone or not. Hence, the shape of the safe

zone is also an important measure to evaluate its effec-

tiveness. The safe zone in our case is always a polygon

and the cost of checking whether a client lies inside the

safe zone or not is linear to the number of edges of the

polygon. Figure 11(b) shows that the average number of

edges of the safe zone is around 5 whereas the maximum

number of edges for any safe zone is 14. We conducted

the same experiments for other settings (e.g., varying

distribution) and observed that the average number of

edges is always between 5 to 6.

5.1.8 Effectiveness of proposed optimizations

In Figure 12, we evaluate the effectiveness of the op-

timizations we presented in Section 3.4. More specifi-

cally, Basic is the basic algorithm (Algorithm 1). No-

Pseudo is the same as our main algorithm except that

it computes the safe zone by using exact impact re-

gions instead of using pseudo-impact regions. However,

No-Pseudo algorithm uses our proposed pruning rules.

In contrast, No-Pruning algorithm uses the concept of

pseudo-safe zone but does not employ the pruning rules.

Figure 12 shows that our algorithm is several orders

of magnitude better than the basic algorithm (note the

log scale). The IO cost of No-Pseudo is quite high be-

cause it does not use the main-memory R-tree (i.e., for

each accessed object, all other objects have to be con-

sidered). Although the IO cost of No-Pruning is lower

than the cost of No-Pseudo, it is 20 to 30 times higher

than the IO cost of our algorithm. This shows the ef-

fectiveness of our pruning rules.
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5.2 Moving top-k queries

5.2.1 Competitors

To the best of our knowledge, we are the first to pro-

pose a continuous monitoring algorithm for moving top-

k queries supporting arbitrary monotonic scoring func-

tions. To evaluate our algorithm, we compared it with

a näıve algorithm that recomputes the results at each

timestamp. However, näıve algorithm was several or-

ders of magnitude worse than our algorithm. For a strict

evaluation, we designed a supreme algorithm which as-

sumes that the optimal safe zone (i.e., the largest possi-

ble safe zone as described in Section 4.2.1) is known to

it at no additional cost. Specifically, at each timestamp,

we check if the set of top-k objects are the same as the

previous timestamp. If so, we know that the query is

still inside the optimal safe zone. Therefore, we assume

that the supreme algorithm does not incur any CPU or

IO cost in such case. At the timestamp when the set of

top-k objects changes, the query must have moved out

of the optimal safe zone in which case the CPU and IO

cost of the supreme algorithm corresponds to the cost

of recomputing the top-k objects which is done using a
best-first search on the R-tree. In other words, the cost

of the supreme algorithm is the cost of recomputing

the top-k objects for only those timestamps when the

query is guaranteed to have moved out of the optimal

safe zone (and the top-k objects are guaranteed to be

changed). Given that the supreme algorithm assumes

the existing of an oracle that obtains optimal safe zone

without incurring any cost, its IO and CPU cost is guar-

anteed to be superior than the existing algorithms that

compute smaller than the optimal safe zones.

5.2.2 Experimental Setup

The experimental setup is the same as for the moving

skyline queries (Section 5.1.2) and the default values

for the relevant parameters are also the same as in Ta-

ble 2. We vary k from 1 to 20 and the default value

of k is 10. The static attributes are obtained from the

census data set House used in [46] and correspond to

the monthly owner costs, electricity cost, and property

taxes (normalized from 0 to 1). Our algorithm requires

two parameters ε and n (see Algorithm 5) which are

set to 0.01% of the width of data universe and 100,

respectively.

We evaluate the algorithms for the weighted sum,

weighted product and weighted distance scoring func-

tions (the default being weighted sum). We assign equal

weights to each dimension as the default setting. How-

ever, we also show the effect of varying the weights for

the dynamic and static dimensions. Note that the score

of an object may be zero for the weighted product if

even one of the attributes is zero. Similarly, the score

may be undefined for the weighted distance function

if static score is zero. To overcome these, we add the

same constant to each attribute for the weighted prod-

uct and weighted sum scoring functions. The results

of each moving query are monitored for 1 hour (3600

timestamps) and the experiments report the average

cost per timestamp.

In our experiments, we evaluate the CPU cost at

the server as well as at the client. The CPU cost at the

server is the cost of computing the top-k results (for the

supreme algorithm) and the cost of computing both the

top-k results and the safe zone for our algorithms. At

each timestamp, the client checks whether the query

is still inside the safe zone or not. If it is still inside

the safe zone, it simply recomputes the scores of the

objects which were sent by the server and updates the

top-k results locally. Otherwise, it sends a request to

the server to send a new safe zone along with the top-k

results. Therefore, the client CPU time corresponds to

the cost of checking whether it is still inside the safe

zone or not and, if it is still inside the safe zone, the

client CPU time includes the cost of recomputing the

scores of the objects. For the supreme algorithm, we

assume that the cost to check whether the query is still

inside the safe zone or not is zero. We show the results

for the ordered top-k queries. The server CPU cost for

the unordered top-k queries is the same as the ordered

top-k queries for both the supreme and our algorithms.

The client CPU cost for the unordered top-k queries is

zero for the supreme algorithm. The client CPU cost

for our algorithm is the same as for the ordered top-k

queries.

5.2.3 Effect of k and m

Since our algorithm uses m-relaxed safe zone, we evalu-

ate our algorithm for different values of m. Specifically,

we vary k and compare the performance of supreme

algorithm against our algorithm where our algorithm

uses m = 1, m = 2, m = 5 and m = k. Throughout
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Fig. 14 Effect of k and m (Weighted Product Scoring Function)
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Fig. 15 Effect of k and m (Weighted Distance Scoring Function)

this section, we show the average IO cost per times-

tamp in multiples of 10−3 and the average CPU time

per timestamp in microseconds.

Figures 13, 14 and 15 show the results for weighted

sum, weighted product and weighted distance scoring

functions, respectively. The results show that the IO

cost and CPU time at the server decrease as the value

of m increases. This is because the m-relaxed safe zone

gets larger as the value of m increases and, as a conse-

quence, the results of the query are to be recomputed

less often. Figures 13(c), 14(c), 15(c) show the average

radius of the safe zone for each algorithm and confirm

that the radius is larger for bigger values of m. We do

not show the radius for the supreme algorithm because

the shape of the optimal safe zone is unknown. Note

that the radius of the safe zone decreases as the value

of k increases which explains the increase in IO and

CPU cost for bigger values of k.

Our algorithm for m = 5 and m = k performs rea-

sonably well compared to the supreme algorithm for all

scoring functions. Interestingly, the IO cost for our al-

gorithm with m = k and m = 5 is smaller than the

IO cost of the supreme algorithm for larger k. This is

because the supreme algorithm computes the safe zone

which is optimal for m = 1 (i.e., the largest possible

1-relaxed safe zone) which may be smaller than the m-

relaxed safe zone computed by our algorithm for m > 1.

The client CPU time increases with k as shown in

Figures 13(d), 14(d) and 15(d) because the client needs

to recompute the results of more objects at each times-

tamp. Note that the client CPU cost of our algorithm

is pretty similar to the client CPU time of the supreme

algorithm especially for smaller values of m.

For the ease of illustration, in the rest of the exper-

iments, we compare the supreme algorithm with our

algorithm only for m = 5 and m = k. Also, we only

evaluate the IO cost and the CPU cost at the server for

the weighted sum scoring function. The results for the

other scoring functions follow a similar trend.

5.2.4 Effect of data cardinality

Figure 16 shows the effect of data cardinality. As ex-

pected, the IO cost increases with the increase in data

cardinality. Our algorithm has significantly smaller IO

cost than the supreme algorithm for m = k which is

mainly because of the larger safe zone. The CPU cost of

the three algorithms only slightly increase with the in-

crease in data cardinality which is mainly because most

of the R-tree entries/objects are pruned. The CPU cost

of our algorithms is around 30% more than that of the

supreme algorithm. Both of our algorithms are very effi-

cient and incur less than 2 microseconds per timestamp

on average.
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Fig. 16 Effect of data cardinality
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Fig. 17 Effect of dimensionality

5.2.5 Effect of dimensionality

Figure 17 shows the effect of data dimensionality on

the three algorithms. The IO and CPU cost of each al-

gorithm increase with the dimensionality because the

index becomes bigger and the algorithms need to pro-

cess more nodes and objects to compute the top-k re-

sults/safe zone. Our algorithms performs reasonably

well compared to the supreme algorithm and have IO

costs lower than that of the supreme algorithm.

5.2.6 Effect of query speed

Figure 18 shows the effect of query speed on the three

algorithms. We change the average speed of moving

queries from 40 km/hr to 120 km/hr. As expected the

cost of our algorithms increases with the increase in

query speed because the query leaves the safe zone more

often. Our algorithms perform reasonably well com-

pared to the supreme algorithm for the CPU time and

have lower IO cost.

5.2.7 Effect of weights

In Figure 19, we vary the weight assigned to the dy-

namic dimension (i.e., distance) and study its effect on

the performance of the algorithms. The IO and CPU

cost of each algorithm increase as the weight assigned

to the distance is increased. This is because the dis-

tance between query and an object contributes to its

score more significantly when the weight is larger which

results in smaller safe zone (as the results become more

sensitive to the query movement). The effect is more

significant on the CPU time of our algorithms than the

supreme algorithm because them-relaxed safe zones are

more severely affected by the increase in weight than

the optimal safe zone used by the supreme algorithm.
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6 Conclusions

We are the first to present a safe zone based approach

to continuously monitor skyline for queries moving in

arbitrary fashion. We also present the first approach

to continuously monitor top-k queries involving arbi-

trary monotonic scoring functions. We propose efficient

safe zone construction techniques to monitor the sky-

line queries and top-k queries. Our experiments demon-

strate that the cost of our proposed algorithms is close

to a lower bound cost and is more than three orders of

magnitudes lower than a näıve algorithm. Our proposed

approach to monitor top-k queries can be generalized

to continuously monitor various other queries for differ-

ent distance metrics. An interesting direction for future

work is to consider continuous queries involving more

than one dynamic dimensions.
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