
Location-Aware Group Preference Queries in
Social-Networks

Ammar Sohail, Arif Hidayat, Muhammad Aamir Cheema, and David Taniar

Faculty of Information Technology, Monash University, Australia
{ammar.sohail, arif.hidayat, aamir.cheema,

david.taniar}@monash.edu

Abstract. With the recent advances in location-acquisition techniques and GPS-
embedded mobile devices, traditional social networks such as Twitter and Face-
book have acquired the dimension of location. This in result has facilitated the
generation of geo-tagged data (e.g., check-ins) at unprecedented scale and have
essentially enhanced the user experience in location-based services associated
with social networks. Typical location-based social networks allow people to
check-in at a location of interest using smart devices which then is published
on social network and this information can be exploited for recommendation. In
this paper, we propose a new type of query called Geo-Social Group preference
Top-k (SG-Topk) query. For a group of users, a SG-Topk query returns top-k
places that are most likely to satisfy the needs of users based on spatial and social
relevance. Finally, we conduct an exhaustive evaluation of proposed schemes to
answer the query and demonstrate the effectiveness of the proposed approaches.

1 Introduction
A location-based social network (LBSN) is usually represented as a complex graph
where nodes represent various entities in the social network (such as users, places or
pages) and the edges represent relationships between different nodes. These relation-
ships are not only limited to friendship relations but also contain other types of rela-
tionships such as works-at, born-in and studies-at etc [1]. In addition, the
nodes and edges may also contain spatial information such as a user’s check-ins at dif-
ferent locations [2]. Consider the example of a Facebook user Sarah who was born in
USA, works at Monash University and checks-in at a particular restaurant. Facebook
records this information by linking Facebook pages for Monash University and USA
with Sarah [3], e.g., Sarah and Monash University are connected by an edge labelled
works-at and, Sarah and USA are connected with an edge labelled born-in. The
check-in information records the places the user has visited.

Inarguably, social connections play a vital role in our daily lives to enable us in
making right decisions in various activities and events and thus impose some influence
on us. For instance, previous work [4] explores the effects of social influence on rec-
ommendation and their experiments show that a user adopts a suggestion from people
socially connected to her which may or may not be derived from her own preference. In
recent years, several works on social network analysis [5] have observed that a user’s
behaviour indeed often correlates to the behaviour of her friends.

In many applications, a group of users may want to plan an activity to find a point of
interest (POI) for example, some conference attendees would like to go out for dinner
together. For this purpose, we may consider their respective locations and social circles
to recommend required POIs. In this paper, we study a problem of finding top-k places



considering their distance from the group of query users Q and popularity of the place
among each query user qi ∈ Q’s social connections (e.g., the number of check-ins at
the place by each q’s friends).

Consider an example of a group of tourists visiting Melbourne. The group consists
of tourists from various countries e.g., conference attendees from Italy, Germany and
Denmark. They may want to find a nearby pub which is popular (e.g., frequently visited)
among people from their respective countries. This involves utilizing spatial informa-
tion (i.e., near by pub, check-ins) as well as social information (i.e., people who were
born-in Italy, Germany and Denmark).

The applications of such queries are not only limited to traditional location-based
social services. These can also be used in disaster management, public health, security,
tourism, marketing etc.. For example, in public safety and crime prevention, law en-
forcement agencies may be keen on finding frequently visited places by users who have
tweeted about Drugs, Burglary and Extortion and have also joined some pages/groups
containing/sharing information related to those crimes on social networks. The users
are socially connected through an edge (entity) e.g., a tweet, a page or a group in so-
cial network and then agencies can exploit one-hop neighbours of the entities to find
frequently visited places to raid and prevent drugs dissemination.

Although several types of queries have been investigated on LBSNs [6–8], to the
best of our knowledge, none of the existing methods can be applied to answer the
queries like the above that aim at finding near by places that are popular in social cir-
cles of the query users satisfying social and spatial constraints. Motivated by this, in
this paper, we formalize this problem as a Geo-Social Group preference Top-k (SG-
Topk) query and propose efficient query processing techniques. Specifically, a SG-
Topk query retrieves top-k places (points of interest) ranked according to their spatial
and social relevance to the group of query users where the spatial relevance is based on
how close the place is to the location of each group member and the social relevance
is based on how frequently it is visited by the one-hop neighbors of each query user
qi ∈ Q. A formal definition is provided in Section 3.1.

First we present Branch-and-Bound approach to solve our problem and then we
propose some optimization techniques to further improve its performance. Our experi-
mental study shows that our optimized algorithm outperforms the other one.
We make the following contributions in this paper.
1. To the best of our knowledge, we are the first to study the SG-Topk query that
retrieves near by places popular among a particular group of users w.r.t. each query
user qi ∈ Q in the social network.
2. We present Branch-and-Bound algorithm followed by some optimizations made to
it to process the query which enable flexible data management and algorithmic design.
3. We conduct an exhaustive evaluation of the proposed schemes using real dataset and
demonstrate the effectiveness of the proposed approaches.

2 Related Work
Geo-Social query processing is an emerging field and is getting attention of research
community these days [7, 9]. Huang et al [10] studied a Geo-Social query that retrieves
the set of nearby friends of a user that share common interests, without providing con-
crete query processing algorithms. Yang et al [11] introduced a group query namely,
Social-Spatial Group Query (SSGQ) which is useful for impromptu activity planning.



In addition, nearest neighbour queries have been widely applied in location-based social
networks recently [12, 13].

Similarly, top-k queries retrieve top-k objects based on a user defined scoring func-
tion and have been well studied [1, 14]. Ilyas et al. [15] give a comprehensive survey
of top-k query processing techniques. [16] propose some of the top-k processing al-
gorithms for example Fagins Algorithm and No-Random Access algorithms. Another
work is presented by Jiang et al [17] in which they propose a method to find top-k local
users in geo-social media data. However, their social scoring criteria is not applicable to
our problem definition. There are some related works on group queries and community
search but they focus on different scenarios and objectives [18, 19].

Group (aggregate) nearest neighbour queries are first presented by Papadias et al.
[20] and proposed three different methods MQM (multi query method), SPM (single
point method) and MBM (minimum bounding method). The propsed methods are de-
signed for Eucledean space and are not suitable for criteria involving users’ preference.
In 2007, Yiu et al. [21] introduces a new query called top-k spatial preference query
which returns top-k objects whose ranking is defined by other objects around them.
Yuan et al. [6] proposed a new query which returns top-k objects based on distance and
objects ratings. Many previous studies [21, 22] have proposed to integrate POI proper-
ties into POI recommendations however, these works do not consider user preferences.

3 Preliminaries
3.1 Problem Definition
Location Based Social Network (LBSN): A location-based social network consists
of a set of entities U (e.g., users, Facebook Pages etc.) and a set of places P . The
relationship between two entities u and v is indicated by a labelled edge where the label
indicates the type of relationship (e.g., friend, lives-in) [1]. A LBSN also records
check-ins where a check-in of a user u ∈ U at a particular place p ∈ P indicates an
instance that u had visited the place P at a particular time.
Score of a place p [1, 2]: Given a query user qi, the score of a place p ∈ P is the
weighted sum of its spatial score (denoted as spatial(p, qi)) and its social score (de-
noted as social(p, qi)).

Score(p, qi) = α× spatial(p, qi) + (1− α)× social(p, qi) (1)

where α is a parameter used to control the relative importance of spatial and social
scores. The social score social(p, qi) is computed as follows. Let Fqi denotes the one-
hop neighbors of any of the query users qi ∈ Q considering a particular relationship
type, e.g., if the relationship is works-at, the query entity is a Facebook Page for
the company Samsung, then Fqi is a set of users who work in Samsung. Although our
techniques can be used on any type of relationship, for the ease of presentation, in
the rest of the paper we only consider the friendship relationships. In this context, Fqi
contains the friends of the query user qi. Let Vp denotes the set of all users that visited
(i.e., checked-in at) the place. The social score social(p, qi) of place p is computed as
follows:

social(p, qi) = 1− |Fqi ∩ Vp|
|Fqi|

(2)

where |X| denotes the cardinality of a set X . Intuitively, social(p, qi) is the propor-
tion of the friends of a query user q ∈ Q who have visited the place p.



The spatial score spatial(p, qi) is based on how close the place is to the query
user qi ∈ Q. Formally, spatial(p, qi) = ||p, qi||, where ||p, qi|| indicates Euclidean
distance between the query user and p. Note that social(p, qi) is always between 0
to 1 and the smaller social score is considered better. In addition, we also normalize
spatial(p, qi) such that it is also between 0 to 1, e.g., the data space is normalized such
that ||p, qi|| ≤ 1.
Aggregate Score of a place p: Given a set of query users Q = {q1, q2, ...qn}, the
aggregate score of a place p (denoted as aggScore(p)) is computed using a monotonic
scoring function f which takes as input each Score(p, qi) for every qi ∈ Q.

aggScore(p) = f(Score(p, qi), ..., Score(p, qn)) (3)

For example, if f is average, the aggregate score corresponds to
∑i=n
i=1 Score(p, qi)/n.

Similarly, if f is min, the aggregate score corresponds to minimum of Score(p, qi) for
qi ∈ Q.
Geo-Social Group preference Top-k (SG-Topk) Query: Given a set of places P =
{p1, p2, ...pn} in a LBSN, a SG-Topk query Q returns k places with smallest ag-
gregate score aggScore(p). The aggScore(p) of each place p ∈ P is computed as
described above depending on the function f used. Some examples of the function
f are min, max and avg. For instance, if f corresponds to min, the aggregate score
will be aggScore(p) = min(Score(p, qi), ..., Score(p, qn)) that is, aggScore(p) =
argmin
i:1 to n

Score(p, qi) ∀ qi ∈ Q . As an example, consider a dataset containing a set of

places i.e., P = {p1, p2, p3, p4, p5} and Q is a set of query users i.e., Q = {q1, q2, q3}.
Table 1 illustrates spatial score, social score, and score for each place p for each query
user qi and it also shows the aggregate score.

P ||p, qi|| Social(p, qi) Score(p, qi) aggScore(p)

p1

q1 = 0.10
q2 = 0.14
q3 = 0.12

q1 = 0.6
q2 = 0.4
q3 = 0.8

q1 = 0.35
q2 = 0.27
q3 = 0.46

Avg = 0.36
min = 0.27
max = 0.46

p2

q1 = 0.09
q2 = 0.05
q3 = 0.13

q1 = 0.8
q2 = 0.6
q3 = 0.4

q1 = 0.445
q2 = 0.325
q3 = 0.265

Avg = 0.345
min = 0.265
max = 0.445

p3

q1 = 0.22
q2 = 0.20
q3 = 0.15

q1 = 1.0
q2 = 0.6
q3 = 0.8

q1 = 0.61
q2 = 0.40
q3 = 0.475

Avg = 0.495
min = 0.40
max = 0.61

p4

q1 = 0.20
q2 = 0.17
q3 = 0.10

q1 = 0.2
q2 = 0.4
q3 = 0.4

q1 = 0.20
q2 = 0.285
q3 = 0.25

Avg = 0.245
min = 0.20
max = 0.285

p5

q1 = 0.17
q2 = 0.12
q3 = 0.09

q1 = 0.6
q2 = 0.8
q3 = 0.4

q1 = 0.385
q2 = 0.46
q3 = 0.245

Avg = 0.363
min = 0.245
max = 0.46

Table 1: Sample Dataset and Aggregate Scores

If f corresponds to avg, α = 0.5 and k = 2, the corresponding SG-Top2 query
reports places (p4 and p2) that minimizes the average aggregate score aggScore(p).
Similarly, if f corresponds to max, the SG-Top2 query reports places (p4 and p2)
that minimizes the maximum aggregate score (aggScore(p)). On the other hand, if f
corresponds to min, the SG-Top2 query reports places (p4 and p5) that minimizes the
minimum aggregate score (aggScore(p)).



4 Techniques Overview
Before presenting our approaches to solve SG-Topk query in detail, first we provide
a brief overview of the approaches and to the best of our knowledge, there does not
exist any technique in literature that can be adopted to answer the proposed query. First
we present Branch-and-Bound approach and then we present optimization techniques
to further improve its performance. The Branch-and-Bound approach uses R-tree to
process places in ascending order of their aggregate distance from each query user qi ∈
Q and then computes social score of each place p to finally compute aggregate score i.e.,
aggScore(p). Since computation of aggScore(p) of each p ∈ P is computationally
expensive, we design a specialized index structure associated with each user u ∈ U to
pre-process her friends’ check-in information. Our Optimized approach leverages the
proposed index structure to offer efficient pruning techniques to prune such candidate
places that cannot be a part of top-k places.
Next, we briefly describe three indexes used by our algorithms.
Facility R-Tree: We create an R-tree where all places (p ∈ P ) in the dataset are indexed
based on their location coordinates.
Check-in R-Tree: For each user u, we create a Check-In R-Tree which indexes all
check-ins of the u. This is a 2 dimensional R-tree containing the location coordinates
information of each check-in. If a place p is visited by a user multiple times, it will be
indexed as many times it was visited hence, Check-in R-Tree contains duplicate entries
for the place p since many applications (e.g., which include ranking and recommenda-
tion of places) do require complete check-in information of users.
Friendship Index: For each user, her friends are indexed using B+-Tree sorted on their
IDs. This is used to efficiently retrieve the friends based on their IDs.

4.1 Branch-and-Bound (B&B) Algorithm
Before presenting our Optimized approach, we first discuss B&B approach to pro-
cess SG-Topk query. The B&B approach is to traverse Facility R-Tree in best-first
manner. For this purpose, we use a min-heap where the key for each entry E is
minAggDist(Q,E). To compute minAggDist(Q,E), the algorithm computes mini-
mum distance of E from each query user qi ∈ Q and then according to the aggregate
function f provided, the algorithm finalises the value of minAggDist(Q,E). For ex-
ample, if f = min, theminAggDist(Q,E) is the smallest minimum distance between
E and any of the qi. Then, we initialize min-heap with the root of Facility R-Tree.

Further, the algorithm starts de-heaping entries in ascending minAggDist(Q,E)
order. If a de-heaped entry E is a node, it computes its lower-bound aggregate score
(denoted as LBaggScore(E)) based on its minAggDist(Q,E) only, assuming that
its social score i.e., social(E) is maximum. Further, if the de-heaped entry E is an ob-
ject (a place p), it computes its exact aggregate score aggScore(p) and updates top-k
places. Finally, at any point, if an entry E having lower-bound aggregate score worse
than current kth best place score (denoted as aggScorek) is de-heaped, the algorithm
terminates. The reason is, every subsequent entry E in min-heap will have worse ag-
gregate score than the current aggScorek.

4.2 Optimized Algorithm
This section focuses on our Optimized approach to process SG-Topk queries and be-
fore presenting the technique in detail, first we describe a specialized index specifically
designed for the technique.



Friends Check-ins R-Tree: In addition to the previous indexes, for each user u, we
propose another index called Friends Check-Ins R-tree (FCR-Tree) which maintains the
summary of check-ins of all friends of u. Specifically, FCR-Tree stores check-in infor-
mation of each friend of u by indexing only one MBR for each friend, thus constitutes
the summary of all friends check-ins. Since we index only one object per friend there-
fore, the size of the index is proportional to the number of friends of u. Note that the
indexed objects are the root MBRs of each friend’s Check-in R-Tree.

Let’s assume a user u ∈ U where the friends of u areFu = {u1, u2, u3. . . u19, u20}.
Figure 1 illustrates the idea behind the FCR-Tree.

Fig. 1: Summary of Friends’ check-ins

4.2.1 Computation Module:
In B&B algorithm, since lower-bound of Facility R-tree nodes is computed based

only on minAggDist(Q,E), it is loose which results in high computation cost. To
develop an efficient approach to computing solution for SG-Topk query, we propose
few improvements in the algorithm. First, we present highlights of the improvements
we made.
1. First we compute tighter lower-bound on aggregate score of a node entry E i.e.,
LBaggScore(E) using better estimate of its social score. For this purpose, the
algorithm exploits FCR-Tree of each query user qi ∈ Q.

2. Then, the algorithm computes a region (denoted as region bounded rectangle, RBR)
based on current aggScorek to quickly check the entries that can be pruned.

3. Finally, while en-heaping an entry E, we make an observation to avoid computing
its lower-bound on social score by associating its parent node’s lower-bound on
social score with it as an initial estimate.

The details of the above mentioned improvements are provided next.
1. Computing Lower bound on Aggregate score:
Recall that in B&B approach, to estimate best possible aggregate scoreLBaggScore(E)
of an entry E, we assume that its social score i.e., social(E) is maximum and there-
fore, its lower-bound is loose. To overcome this limitation, the Optimized algorithm



leverages Friends Check-ins R-Tree (FCR-Tree) to estimate social score of the E (de-
noted as LBSocial(E)) which in return, tightens the lower-bound on aggregate score
LBaggScore(E).

Specifically, to compute LBSocial(E) of an entry E of Facility R-tree, the algo-
rithm traverses specialized index i.e., FCR-Tree of a query user qi to compute number
of its objects (root MBRs of Check-In R-trees of friends) intersecting withE. Let’s con-
sider an example in Figure 2 where we have a Facility R-tree entry E and some FCR-
Tree objects belonging to qi’s friends ranging from u1 to u5. Since only u1, u4 and u5
overlap with E, they might have checked-in at any place p in E. Therefore, the maxi-
mum number of friends who might have visited a place in E is 3, which can be used to
obtain the lower-bound on social score. Let’s denote the number of overlapping objects
as numOverlap, the lower-bound on social score is computes as 1− numOverlap

|Fqi| .
In addition, once the lower-bound on social score against a query user qi is com-

puted, the lower-bound on score (denoted as LBScore(E, qi)) is computed against the
query user qi using equation 4. The pseudocode of computing LBScore(E, qi) is given
in Algorithm 1.

Fig. 2: MBR Social Score Bound

LBScore(E, qi) = α×minDist(E, qi) + (1− α)×
(
1− numOverlap

|Fqi|

)
(4)

Algorithm 1: Get-LBaggScore(mbr,Q)

1 numOverlap = ∅;
2 foreach user qi ∈ Q do
3 Issue a range query on FCR-Tree;
4 numOverlap = Compute number of objects overlapping with the mbr;
5 LBSocial(mbr, qi) = 1− numOverlap

|Fqi|
;

6 LBScore(mbr, qi) = α×minDist(mbr, qi) + (1− α)× LBSocial(mbr, qi) ;
7 end
8 LBaggScore(mbr) = f(LBScore(mbr, qi), ..., LBScore(mbr, qn));
9 return LBaggScore(mbr)

2. Optimal MBR based Search Regions:
Recall that in B&B, we need to computeminDist(E, qi) n times to computeminDist(E,Q).
For this purpose, we require to compute minimum distance from the entry E to each qi
and if this distance is greater than aggScorek

α , we can ignore E. However, this requires



computing minDist(E, qi) n times. To overcome this problem, we create a Region
Bounding Rectangle (denoted as RBR) such that if an entry E does not overlap with it,
it is pruned.

In particular, RBR is defined by corresponding aggregate function f and its size de-
pends on current aggScorek and α i.e., aggScorekα . The algorithm only accesses those
entries which intersect with it. Figure 3 demonstrates two RBRs for min, max and aver-
age aggregate functions.

– Min: Consider SG-Topk query with Q = {q1, q2, q3} in Figure 3(a). The shaded
area corresponds to the RBR for min (where n = 3) which is a minimum bounding
rectangle of union of three circles (centred at q1, q2, q3) each with radius aggScorek

α .
Entry E for example, should be not visited since it is not intersecting with the RBR
and cannot contain a place pwhose smallest score w.r.t. any of the qi ∈ Q is smaller
than current aggScorek i.e., for any place p in E, aggScore(p) > aggScorek.

– Max: The RBR corresponds to the intersection of three minimum bounding rectan-
gles (shaded area) for each circle (centred at corresponding qi) with radius aggScorekα
as illustrated in Figure 3(b). Let’s take an example of an entry E intersecting with
the circle of q3. This entry E should not be visited because for any place p in E,
which is outside this intersected area, dist(qi, p) > aggScorek for at least one qi.
Therefore, aggScore(p) > aggScorek.

– Average: For f=Average, the RBR is same as f=min because a place p for which
aggScore(p) regarding f=min is greater than aggScorek, its aggScore(p) regard-
ing f=Average is also greater than aggScorek. Note that a place p that is outside
RBR, has aggScore(p) > aggScorek because its average distance is greater than
aggScorek

α . For example, an entry E should not be visited since it is not intersecting
with the RBR as shown in Figure 3(a). Therefore, it cannot contain a place p whose
average score (aggScore(p)) w.r.t. all qi ∈ Q is smaller than current aggScorek.

(a) Search Region (f=avg, min) (b) Search Region (f=max)

Fig. 3: MBR Based Search Space

3. Observation on Social Score:
Recall that in step 1, to compute lower-bound aggregate score of an entry E, it requires
traversing FCR-Tree another time while inserting it in priority queue for the first time.
To avoid this overhead, we consider its parent’s social score lower-bound as an initial
estimate of E′s social score lower-bound which is a valid lower-bound on a child’s
social score.

We next describe the algorithm in detail with pseudocode given in Algorithm 2.



4.2.2 Algorithm Overview:
Algorithm 2 starts traversing Facility R-tree in best-first approach. For this purpose, a

min-heap is initialized with the root node with LBaggScore(root) as a sorting key (at
line 3). To compute LBaggScore, it first invokes Get-LBaggScore(mbr,Q) (algorithm
1). Then in first loop (at line 4), algorithm starts de-heaping entries iteratively and ex-
amines whether or not it intersects with RBR, if it does not, it is immediately pruned
along with all the entries lie inside (at line 6). Further, if the entry E overlaps and is
a place p (an object), the algorithm computes its aggScore(P ) (at line 8) and update
current kth best place score aggScorek and RBR (at line 9).

Algorithm 2: Optimized Algorithm
1 min-heap = ∅, aggScorek =∞;
2 LBaggScore = Get-LBaggScore(root,Q);
3 Initialize min-heap with root of Facility R-tree with LBaggScore as a key ;
4 while min-heap 6= ∅ do
5 De-heap entry E;
6 if E overlaps with RBR then
7 if E is an object then
8 Compute aggScore(E);
9 Update aggScorek and RBR;

10 else
11 LBaggScore(E) = Get-LBaggScore(E,Q) // Algorithm 1
12 if LBaggScore(E) < aggScorek then
13 foreach child node c of E do
14 if c overlaps with RBR then
15 LBaggScore(c) =

α×minAggDist(c,Q) + (1− α)× LBsocial(E);
16 if LBaggScore(c) < aggScorek then
17 insert c in min-heap;
18 end
19 end
20 return Return Top-k Places

Otherwise, the algorithm invokes Get-LBaggScore(mbr,Q) (algorithm 1) to compute
LBaggScore(E) (at line 11). Subsequently, if LBaggScore(E) is better than current
aggScorek, in second loop, it starts en-heaping its child nodes provided that they over-
lap with RBR (at line 14). Moreover, if a child node c qualifies, the algorithm computes
its LBaggScore(c) by inheriting its social score from its parent. Consequently, if the
estimated LBaggScore(c) of c is less than the current aggScorek, it is finally en-
heaped for further processing (at line 17). Once min-heap is emptied, the algorithm
terminates and reports top-k places (at line 20).

5 Experiments
5.1 Experimental Setup
To the best of our knowledge, this problem has not been studied before and no previous
algorithm can be trivially extended to answer SG-Topk queries therefore, we evaluate
the proposed algorithms on their performance by comparing them with each other.

Each method is implemented in C++ and experiments are run on Intel Core I5
2.4GHz PC with 16GB memory running on 64-bit Ubuntu Linux. We use real dataset



of Gowalla [23] and various parameters used in our experiments are shown in Table
2 where Query MBR Size represents the size of the region in which query users are
spread. Gowalla dataset contains 196,591 users, 950,327 friendships, 6,442,890 check-
ins and 1,280,956 checked-in places across the world. The node size of Facility R-tree
index is set to 4096 Bytes and 1024 Bytes for Check-In R-Tree and FCR-Tree indexes
because they have fewer objects as compared to Facility R-tree. For each experiment,
we randomly choose 10 groups of query users and consider them as query groups Q.

Parameters Values
Group Size (n) 2, 4, 6, 8

f min, max, avg
Query MBR Size (km) 50, 100, 200, 400

Average Friends 200, 400, 600, 800
k 5, 10, 15, 20

Table 2: Parameters (Default shown in bold)

5.2 Performance Evaluation
Effect of k: In this evaluation, we test our proposed algorithms for various values of k
for min, max and avg function. Note that for f = min in Figure 4(a), Optimized Algorithm
(OA) is upto 10 times faster and the performance is not significantly affected by the
value of k. The reason is that, the main cost depends on traversing Facility R-tree and
then computing lower bounds of the nodes and this dominant cost is not affected by
k. Similarly, in Figure 4(b) for f = max, Branch-and-Bound Algorithm (B&B) takes
little bit longer to process the query due to more number of places being qualified as
candidates. However, for f = avg both the algorithms performs better as compared to
other functions where OA outperforms B&B by atleast 8 time as shown in Figure 4(c).
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Fig. 4: Effect of varying number of requested places (k)
Effect of Average number of Friends: In this experiment, we study the effect of num-
ber of friends on B&B and OA algorithms in Figure 5. Note that the size of FCR-Tree
relies on number of friends of a query user qi ∈ Q. Also, the distribution of each
friend’s check-ins in search space determines the size of root node of Check-in R-Tree.
This in return, affects the lower-bound on social score of Facility R-tree entries in OA
Algorithm. In B&B algorithm, CPU cost mainly depends on computing the social score
of the places p ∈ P and as we increase the number of friends, the CPU cost increases.
On the other hand, OA algorithm is less affected due to the optimization techniques.
Note that, if f=avg, both the algorithms perform better than min and max functions due
to lower aggScorek which aids in pruning more places.
Effect of Query MBR Size: Next in Figure 6, we evaluate the performance of our
algorithms on query MBR size. For this purpose, we randomly spread the query users
in the region of size between 50 to 400 kilometres. Note that, as we increase the size,
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Fig. 5: Effect of varying number of Friends

it does not affects the query processing to great extent since the main cost involves
traversing Facility R-tree, computing lower-bounds and social score of the query. Note
that for f = min and f = max in Figure 6(a) and 6(b) respectively, Optimized Algorithm
(OA) is upto 10 times faster B&B algorithm. However, if f = average, the algorithms
perform relatively better as illustrated in Figure 6(c).
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Fig. 6: Effect of varying Query MBR Size
Effect of Group Size: In this evaluation, we test our proposed algorithms for different
group sizes ranging from 2 to 8 for min, max and avg aggregate functions in Figure 7.
As we increase the group size, it greatly affects the performance of the two algorithms
because the algorithms have to process spatial and social information for more query
users. However, for larger groups, OA performs better than the other one. In addition,
if f = avg, both the algorithms perform relatively better than min and max as shown in
Figure 7(c).
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Fig. 7: Effect of varying Group Size (n)

6 Conclusions
In this paper, we formalized a problem namely, Geo-Social Group preference Top-k
(SG-Topk) query and proposed efficient query processing techniques. First we pre-
sented Branch-and-Bound approach to solve our problem and then we proposed some
optimization techniques to further improve its performance. For this purpose, we intro-
duced a specialized index structure , a region bounding rectangle and an observation to



efficiently process the query. Our experimental study showed that our optimized algo-
rithm outperforms the other one.
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